Lecture 1:
Getting Started on
Distributed LLM Training

FEdouard Oyallon

edouard.oyallon@cnrs.fr

CNRS, ISIR

9
@ What this class is about and what it’s not

Systems
(HPC, CUDA)

Performance & FLOPs

u.“
'

CONFERE NCE ON
PARALLEL
PROCESSING

NEURAL

} INFORMATION
%]}, PROCESSING
*32*SYSTEMS y

- Before we start...

e Prerequisites: I will assume you already know Python and PyTorch.

e If you already have solid experience with distributed training, you may
find parts of the class too introductory.

e Course goal: Give you practical tools to understand training
workflows, optimization, and the link between High-Performance
Computing (HPC) and Machine Learning.

e What this class is not: Not a math-heavy class, and not a pure
programming class.

Covered Topics

Lecture 1: Transformers overview and the ML behind their training
Lecture 2: Hardware fundamentals for training large models
Lecture 3: Parallelization techniques for LLM training

Lecture 4: Communication bottlenecks and Decentralized training
Lecture 5: Post-training

Lecture 6: Inference and serving

Lecture 7 (tentative): Agentic Al

Lecture 8: Grading

Typical Lectures

A typical 4h class will correspond typically to about 1h55 of
lectures, followed by a 10 minute break and 1h55 of lab.

Resources: Unfortunately, we won’t have access to GPU
resources for this class ...

[assume everyone is a ChatGPT /LeChat/Claude/... user.
(so please don’t hide yourselves or pretend you don’t
use it)

On my side, I like honesty on this topic.

@ Grading

e You'll work in pairs (groups of 2) — please coordinate and
communicate with your teammate.

o Grading: HW1 25%, HW2 25%, HW3/Project 50%.

e Project: choose one paper (NeurIPS, MLSys, or similar) on those
lectures topic. (Get my approval that the topic is acceptable before you

start.
Project topic
HW1 is must have
out been validated
G
OUP T w2 is HWlis HW2 is Poster
constitution)
out due due evaluation
i1s due
Today 29/01 05/02 12/02 19/02 26/02 05/03 12/03 19/03 26/03

No Class No Class

LT

@ What you will learn today '.

e Why analysing neural networks training is hard
e Data: what’s used and why it matters
e Transformer architecture: the essentials

e An introduction to training recipes: how transformers are trained in
practice

¢ What is an LLM?

e An LLM (Large Language Model) is an neural network trained
on huge amounts of text to predict the next word in a sentence
and then specialised to a given task.

e LLMs rely on Transformers, and since 2017, their capacity and
performance have kept increasing.

e They can generate, summarize, translate and answer questions in
human-like language.

9

o Why LLMs Are So Useful in ML?

e Part of the popularity of LLMs in ML is their ability to be used as
¢ Foundation Models:

e Trained once on massive, general-purpose data,

e Then reused and adapted for many downstream tasks.
e In context learner:
e No retraining: can work in zero-shot or few-shot mode.

e No gradient updates, no optimizer — yet they behave as if they
“learn” the new task from the prompt (i.e., the input).

e LLMs act as universal task interfaces: we change the prompt, not
the model.

@ The two phases of LLM training'}-?,

e The process of training an LLM is particularly costly and can be split in two
phases:

e Pre-training (generic learning):
e The model is trained once on a massive corpus of raw text

e It aims to learn general language patterns, world knowledge, and basic
reasoning skills.

e Post-training (specialisation & alignment):

e The pre-trained model is typically further trained on curated data and
human feedback

e It aims to specialise it for particular tasks (e.g. instruction following,
coding, chat) and align it with safety & style constraints.

Distributed Optimization in
a Nutshell

Tl

oy Setting L

e Optimization aims at solving problems such that

270

where f has some regularity assumptions, such as L-smoothness:

IVF(0) = V5O < Ll -0

e Typically fis an empirical risk, which has a finite sum structure with a

regularizer: 1 \ ,
F0) == F(0.&) + 50|
1=1

and the simplest is to perform a gradient descent leading to algorithms of
the type, for n > 0 :

brir =0~ 1S VE(B,.6) wil f(0) = F07) < ¢
1=1

e In this case, two relevant quantities are :
T(e): the number of steps to get to an € -solution. Here: G(E) _ TLT(E)

G(e): the number of gradients oracle calls.

@ An embarrassingly parallel setting-*

1
e How can we exploit the structure ot - Z VF(0,&)7

i=1
1 n
e Assume bounded variance, i.e. — Z IVF(,&) — VIO <o?
1=1
. | 1g P (6 L N
o Let’s introduce: gx(0) = z g &i;) with iq, ..., i, ~ Unif({1,...,n})
2
e In this case, we have E|g,(0)] =V f(0#) and Var(gp(0)) < %

also: G(e, k) = KT (e, k)

e We are in an embarrassingly parallel regime: can we choose the batch
size k to minimise the complexity G(e, k)or the number of steps T'(e, k)7

e Let’s study briefly this simplified setting to get some intuitions.

.14

o Example: convex setting

o For instance, assuming that F'(.,¢) is convex and L-smooth then, with the
right step size using gradient descent:

LR? oR
2 £(0,) — £(6)] < | , = ||6o — 67].
500 - 50 < BE+ T8 R= oy -0
: LR? o?R?
e This leads to: T(e,k):@{ — +]%2} with G(€,k) = kT (e, k)

e T'wo cases can be distinguished:

e Noise 0° dominates (right): then we can reduce the number of steps (time)

while maintaining the total complexity, better pick k =n.

e Optimization term dominates (left): increasing k only increases the

complexity, better pick k = 1.

e Does it bring any insights on Deep Learning training and the required batch-
size k7

@ Deep networks and theory: limitations

15

For deep networks, many standard assumptions fail: regularity is unclear,
and the gradient noise can be effectively unbounded for common
nonlinearities.

Even under very strong assumptions, we typically do not get usable
guarantees for optimal hyperparameters (e.g. step size 7, batch size) or the
optimal value.

Convexity allows sharp characterisations, but neural networks are highly
non-convex: what works in convex settings need not work in non-convex
ones, and vice versa.

In practice, both batch size and learning rate must be tuned (e.g. by cross-
validation)

However, even when bounds are essentially vacuous, theory still plays a role
as a sanity check and conceptual guide.

@ Proofs as a sanity check ¥

e The typical assumption one will encounter in the literature are L
smoothness (L-lipschitz gradients) and bounded variance.

e To prove convergence, one typically (implicitly or explicitly) relies on
a Lyapunov function, V' : R — R, which has to satisfy for a
gradient path (0)¢>o0:

V(0:)
dt

e Typically, one shows that additional conditions hold for those

d

= (VV(6;),0;) <0

functions, e.g.:

HVV(6’)||2 > uw(V(0)—-V") 1 -PL conditions

Vc(lit) < —OzV((gt) strong convexity

The difficulty is to find both the dynamic 6; and Lyapunov function V.

d

@ The training loop

e The usual training loop of a Transtormer is rather simple, assuming
data are spliced across n workers via = = .=

71—

initialise layers

until completion, on worker 1

sample é‘; L= // sample from the chunk of the data

R

1ossi — f(@t,gg) // forward pass
mn

1 .
loss; = — E 1088% // average losses
n

1=1
g =V f(0,,&) [/ backward pass
1 —— .
gt = E Z g 7:% // average gradients
1=1

(975_|_1, St+41| = Dptimizer(@t, J¢, St) // update parameters

17

@ Example: Convergence of the previous training loop 18

2.67
— DeepSeek LLM 7B MHA

——— DeepSeek LLM 578 GQA

In practice, we see such loss curves, 24
with drops due to the learning-rate
scheduler. Can we obtain basic
guarantees in a simplified setting?

Training Loss

g
(=]

—
e]

16—

e Assume (Optimizer = SGD §E0 R T TR0 i e
o Let f* — jrelff(@) and write V' (0) = f(0) — f".

e Assume fis L-smooth and the gradient has variance o 2, then

for any learning rate 7), we have:

- 2(f(0o) = f*)
it mv s < UOL) e

Thus, it converges to a stationary point, but the limit point and rate are
unclear, and it fails to explain much of the observed training behavior.

Feeding
Largue Language Models

.19

-

image patches) produced by a tokenizer and fed directly to the model.

Tokens: the fuel of LLMs

e LLMs consume sequences of tokens: discrete units (subwords, bytes, or

e Tokenization comes from NLP / text compression: it defines an

(almost) invertible encoding of the raw signal (text, bytes, sometimes

images).

"

encode
abc. ..

Large Language Models (LLMs), such as GPT-3 and GPT-4, util
1ze 2 process called tokenizatior., Toxenization involves br
eaking cown text into smaller units, xnown as tokens, which
the model can process and understand. These tokens can rang
e trom individual characters to entire words or even lLarger
chunks, dependirg on the model. For GPT-3 and GPT-4, a Byte
Pair Fncoding (BPF) tokenizer is used. BPF is a subword tok
enizaticn technique that allows the model to dynamically bu
ild ¢ vecabulary during training, efficiently representing
common words and word Tragments. Although Lhe core Lokenicza
tion preocess remains similar acrcss different versions of t
hese mocels, the specific implementation can vary based on
the model's architecture and training objectives.

» 10201...

decode

n n

abc. ..

e Each pretrained model is tied to a fixed tokenizer; changing it later
would require retraining (at least) the input/output embeddings.

.20

-

.21

What matters in Tokenisation for LLMs? |

Fidelity: does decode(encode(s)) = s7? (e.g., handle white space, code syntax,

emojis, URLs, ...)

Compression: how many tokens per byte (TPB) we get on typical data.

Higher TPB = more tokens for the same text — worse compression.

Predictability: a sequence is predictable if the model (human, LLM) assigns high

probability to the correct next token, as reflected by low bits per token (bpt) from
the cross-entropy loss.

Efficiency is thus measured as bits per byte bpt X T'PB. There is a trade off, as
- very fine tokenization: a character level tokenisation has a TPB high and btp is

low (easy predictions)
- very coarse tokenisation: TPB is low, but predicting each token is very hard

Some tokens have special roles: end-of-sequence (EOS), beginning-of-sequence
(BOS), padding, and task markers such as <think>, <code>, etc.

PREDICTION AND ENTROPY OF

Generaﬂy7 TPB (French) > TPB (Enghsh) PRINTED ENGLISH, Shanon proves this with

N-grams instead of LLMs tokens dictionaries

2

@ From Tokens to Embeddings."?-...

d
e Tokens are mapped to continuous vectors frcc)im R" via an
. >< VOCa
embedding layer, e.g., a look-up table of size R vocab

e Tokenizer leads to Compute trade-ofis:
- Fewer tokens for the same bytes — shorter sequences, so
more context fits in a fixed window.
- But achieving this often requires a larger vocabulary.,
which increases embedding memory and latency.

e This raises the key question: How should we design our
tokenizer to balance these costs?

e One of the solution is Byte per Encoding: simple, fast to train,
with good compression and predictability.

¢ Training BPE -

e BPE is a simple greedy way to move toward a more efficient code
(fewer bits per byte) by collapsing frequent patterns into single
symbols.

e It greedily minimizes the number of tokens needed to encode a
training corpus (under a fix budget). The algorithm is as follow:

e Initialise with the characters of the alphabet:
D {‘a’, ‘b’, ‘¢, ... }
e Count all adjacent symbol pairs w.w’, (w, w’) eD
e Find the most frequent Jw pair with @0 = w.w’

« Aggregate D+ D U{w}

Remark 1: at every merge, the total number of tokens decrease by f@

(and it is the largest drop possible)

Remark 2: we can’t really prove generalisation to unseen data, no

optimality guarantee on the number of token. In practice: reasonable

@ Fast BPE inference o

e After training, we have an ordered list of merges (a ranked dictionary of token
pairs), namely rank.

e To tokenize new text:
e First, pre-tokenize into base symbols (characters or bytes).

e Then, greedily apply merges in rank order: for each merge rule, replace all
matching pairs in the sequence. This is computationally extensive.

e More efficient variant:
e Scan the sequence once, record all adjacent token pairs.
e Maintain a priority queue (heap) keyed by merge rank.

e Repeatedly take the best pair from the heap, merge it, and update only neighboring
pairs.

rank|[’he”| =1
rank|”10”] = 2
3

rank|”110”|

hje|l|l]o —— he|l]lo —— he|llo

Remark: quasi-linear complexity: every successtul merge replaces two tokens by one

/1\ this is not equivalent to scanning from left to right

@ Tokenisation in image (ViTs).""z-?.

e For images, the simplest way in the spirit of a LLM is to directly
embed images:

e Split the image into a grid of fixed-size patches (e.g. 16x16 pixels).

EEEE
EEEN » [
mEEE = =
EEEE

e Flatten each patch and apply a linear projection — patch
embedding (a vector) so that they belong to R?

e Add positional information (which patch is where).

e From now, treat those as text-tokens.

.26

- Multi-Modal tokenisation

e A key property of transformers is that they can process any sequence of tokens.
To handle multimodal data, we need everything (text, images, etc.) in token
form.

e Example (vision—language prompt):

“I find this image nice <imgl> and this one too <img2>. What’s in them?”
Here, <imgl> and <img2> are special tokens that stand for an image
representation.

e Pipeline idea:
Text: tokenized into text tokens.

Images: encoded into image tokens (patch embeddings or discrete codebook
IDs).

e The transformer then processes one joint sequence:

[text tokens ... <imgl tokens> ... <img2 tokens> ... |

° ° ° ° -.".27
@ Pretraining data in practice *
e Modern LMs are trained on huge, mixed corpora rather than a single
dataset.

e Many open datasets are built on top of Common Crawl or similar
sources, which you can think of as an “arXiv of the web” that we then
filter, clean, and remix.

e Scale matters (we often train on trillions of tokens), but quality matters
more: deduplication, filtering, and smart mixtures usually beat “just
add more noisy web”.

Dataset Size # Tokens Type of data

FineWeb 44'TB 15T Web (English, filtered Common Crawl)
RefinedWeb 2.8TB 0.6T Web (mostly English, filtered Common Crawl)
Dolma, 9.6TB 3.0T Mixed (web, academic, code, books, social)
SlimPajama 0.90TB 6308 Mixed (filtered from Common Crawl)

C4 0.81TB 160B Web (English, filtered Common Crawl)

The Pile 0.83TB 380B Mixed (22 English sources)

ROOTS 1.6TB 340B Multilingual text (59 languages)

The Stack v2 68TB 900 B Source code

Largue Language Models
Architectures

28

@ From RNNs to Transformers ™

e Pre-2017: NLP baselines were mostly RNN/LSTM/GRU encoder—decoders
(seq2seq), i.e. recurrent architectures:

Tni1 = (T ooy T 1)

« RNN bottlenecks: inherently sequential (poor GPU/TPU utilization), vanishing/
exploding gradients, and limited long-range context even with attention on top.

e Transformer (2017): replaces recurrence with self-attention, by processing all tokens
in parallel.

e What this enables:

e Parallelism (beats recurrence): full-sequence parallel compute leads to much
faster training.

e Long-range dependencies: attention connects any token pair directly.

e Simple, scalable block: repeating generic transformers blocks scales cleanly
to billions of params

Transformers!

-

Main Transformer Families

e Encoder-only:

Bidirectional attention over all tokens
Great for understanding tasks (classification, retrieval,

Naturally generative: next-token prediction

etc.) : Add & norm [
Not natively generative (usually trained with masked E posiﬁ:nwise
LM) Encoder : FFN
| L)
Examples: BERT, RoBERTa —————a s | [Add & norm |
Add & norm : 4
[} : Muti-head
Decoder-only: S Songee | J‘mj""m;
Causal (left-to-right) attention with a mask ox 1 —1 N vy
|
:
|
|
|
|
|

4 Masked
Can still do comprehension via prompting e vl
Examples: GPT, LLaMA, Mistral 1t e
Encoder—decoder (seq2seq): <f> Q
. . Embedding Embedding
Encoder reads full input; decoder generates output with: ¥ ¥
Sources Targets

- self-attention (causal)
- cross-attention to encoder outputs at every layer
Strong for tasks needing full context before generating,

e.g. translation, summarisation, instruction tuning
Examples: T5, BART

Add & norm

A L NN E T,

[}

————— —

e e -

.31

@ Decoder-only Transformers '

e A decoder-only Transformer is a stack of identical blocks, each combining

self-attention and a two-layer feed-forward network (with residuals
layer norm).

Sequence of Repeated N times
Tokens . Token
x1,...,L] — Initial _, ... _>Tra,nsformer_> ~_, Final Tr41
embedding Block embedding

e Transformer Blocks:

e Attention layer: performs dot-product between every tokens. Memory
consuming but fast to compute.

e MLP layer: performs at least 2 matrix multiplications, computationally
intensive

Remark 1: a transformer layer preserves dimension across depth.

In the following, I'll focus on Llama-like models

[o o o [32

- Pre-training objective and packing

e Inputs are document packed, i.e., documents are concatenated and
form a giant sequence (masking or sequence packing are possible)

The . Tha
Statue | Status
af ' of
Libaxty Liberty

.........

................................

o) . o <N

ot {ﬂ A7 & \7 e ?
@ e,".(“ o T O S 9}5 Le¥ e ‘)‘5‘ & \:‘\)‘ - o ‘._g.d“

e Two possible ways to perform a prediction:

e Next-token prediction:
It’s a causal LM objective: predict token ¢ from L<t.

e Fill In the Middle (FIM): remove a fraction 10% of the token to

predict
[prefix] <FIM MIDDLE> [suffix] <FIM END> [middle]

Inside the Transformer

.33

@ Description of a Transformer block-

e (oal: a simple block we can stack hundreds of times that

- uses only matrix multiplies (GPU-friendly) ;
- can model long-range interactions (,—>| Add & Norm P
- stays trainable at scale Feed l
Forward
e 3 components are composed: -
NE
e Multi-head Attention: Multi-Head
- What: each token attends to other tokens while it e
keeping position (with a causal mask in LMs). A

- Why: lets the model route information flexibly and
capture long-range dependencies in one step.

e MLP (feed-forward network)
- What: 2-layer MLP (often with expansion + non-linearity like SwiGLU).
- Why: gives non-linear feature transforms and per-token capacity

e RMSNorm + residual connections
- What: normalize activations and add skip-connections around each sub-layer.
- Why: keep activations well-scaled, stabilize gradients, and make it possible to
train very deep stacks of identical blocks.

.35

- FLOPs count

e A FLoating Point Operation (FLOP) is one of the elementary
operations performed by a computation unit. We use it to measure
training /inference compute and to size jobs.

e FLOPs guide LLM architecture design; the goal is high effective
FLOPS to reduce training time and avoid wasting GPU hours

e We'll see in the next lecture that wall-clock time depends also on
other considerations (e.g., IO access)

A e R™*"™ € R™ what are the FLOPS to obtain Ax € R™?

Anxy + Ar2re + ... + A1nTn — m(2n — 1) FLOPS

Remark: “FLOP vs FLOPs vs FLOPS: FLOP=one operation;
FLOPs=operation count; FLOPS=operations per second.

att?ntion laver

d I
q A
e
— W |l ©
n
1!
Embedding
size
d < dq >
e — dk - dq 4
D
number T
of tokens " X I Wk ; K
D
d,
+RoPe d, P —
H— e
T
_I Wv > Vv
4
v

(): query, K:key, V:value

q

nl

.36

@ RoPe (Rotary Positional Embedding) 37

How transformers learn about order

e The goal of RoPe is to give self-attention a sense of token order
without fixed positional vectors. It relies on a maximum context length

N.

e The idea of a RoPe is to encode the position "{" of a token I; & R%ia

l

]] d/?2 A . i
T = [ﬁ,ﬁ],ﬁ,ﬁ c R / and to define x; = (.CI?T -+ la?q;)€2mN

e Why is the positional encoder like this? Fourier flavour and covariance
to translation!

27Ti A
N .x; (translating is a multiplication)

Let (Lw)l 2 Ti+1 then Lx; = €

A 27 (k—1)
Also, relative positions are well encoded: CCZKCE/@ — e~ N xl_rajk

D Attention layers

Let the "stable implementation" of the softmax: ()
! ! eXplr; — maxg Tk
o:RY S RY D o), = DL

L/
» 7 exp(z; — maxy Tg)
The attention layer processes: J=1 J

d :
Query: qq,...,q1, € R Attention Output:
Key: ky,....kp € R
Value: V1y ooy UL/ ERCZ

>

Y1,y € R

Then, perform the attention step:

L/
= Z U(Ql—rkl’)l’vl’ or more simply ¢ = O(QkT)U
['=1

FLOPs: LL'(2d + 5 + 2d')

e Note: Including the previously introduced RoPE, these operations are
not permutation-invariant, they preserve positional information.

e Note: During training, [, = L/

.38

Multi-Head Attention ¥

e Attention is always combined with linear layers

Wi
e : Wq)Attention—»
W,

e Some structural constraints and redundancies (to save FLOPs) can be
introduced into these layers while still maintaining good expressivity.
A typical design uses 14 independent attention modules ("heads")

for the queries, while only H ., key-value heads are instantiated and
shared across several query matrices. Multhead Grouped-query

Wh e R™™ b < H,
W;?, WgL c Rdxm’ h < Hy,,

- (0000000 0000

Queries

e Self-attention: typically H g = Hpy =1,m=d
« Multi-head Attention Hy, = H, > 1, H,m =d

e Group Query Attention: Hq > Hp, > 1, qu = d

@ Causal masks in Decoder-only'”%?.

e The goal of a causality mask is to make training match inference: the
model should not use future tokens to predict the next token ("auto-
regressive" behaviour).

e A binary mask is applied to attention scores

e Position ¢ can only attend to positions < 7.
Key, Value

—+¢il

Query Attention
from Decoder weights

@ MLP layer

e Fix a pointwise non linearity: 0 : R — R so that o (O) = (

GELU, RelU and Swish Aciivation Functions

RelU
Swish / /
1 —— Swish (beta=0.%) 4 ,,/‘
l//l"

—— / g

e A successtul strategy, used in Llama fémily models, is to "gate" the

activations and to slightly increase the dimensionality.
Wy, W, € R*™*™ and T, ¢ R™*¢

sothat Yy = W,(oc(Wyz) © (Wyx))

e Typically, m is an expansion factor that increases dimensionality
(expressiveness)

41

RMS norm

Root Mean Square norm is defined as a normalisation used between
layers, with a learnable parameter v € R and € > 0.

RMSNorm(z) =z ® !
\/5 + o D1 T

RMS norm is much more amenable to parallelisation than a batch

)

norm!! (no cross-communications between samples)

Two strategies (post-norm seems to take the lead)

‘ Qulput ’ Oultput
. *.
= Add & Nom — Add
t MLP
MLP ? om
Post-norm I e ! : Pre-norm

= Add & Norm " Add

T Self-attention

Self-attention Norm

4 i 4

Input Input

.42

-

.43

Forward: the "2P" rules

Let’s provide a simple heuristic to quickly know the number of
FLOPs of a model with P parameters, per token.

Typically, the context length L is much smaller than the
ambient dimension d.

Thus the FLOPs are mostly due to the linear layers rather
than the attention.

If we neglect also the FLOPs due to the RMS, we end up with

FLOPs/token = 2P

What about the backward?

@ Complexity of the backward pass of a linear layer -....4.4
oLet:xERdegR”Xd and ¢:R" — R |

Fix f(.iE, A) — Z(ASE) so that Vf(Ax) c R"™

e What is the fully complexity of a GEMM (General Matrix Multiply)?

Forward: f(z, A) = {(Ax) > 2nd

Backward of the inputs: Vi f(z, 4) = A' (VI(Az)) € R™.
> 2nd
Backward of the weights: VAf(Qj’ A) — (VZ(Ax)) A=]R”Xd7

» 2nd (it’s aggregated over a mini batch)

The total complexity if then 6nd

¢ Backward in Transformers

e (Consequently, as for the forward pass, the methodology to
have an approximation of the number of flops lead to 6P
FLOPs per token for the backward pass.

e Note that some methodology do not take in account the
embedding layer, or use the exact number of FLOPs including
the context length.

Ref.: DeepSeek LLM Scaling Open-Source
Non embeddlng paramet er Language Models with Longtermism

TN 6N = T2y &2

Total parameters

model

6N2 = (2 Nayer dmodel + 6 Tvocab dmodel

/'M = 72 Nayer dmodel + 12 Nlayer dmodel lseq
"non-embedding FLOPs per token"

.45

@ Full Anatomy of a Decoder-Only Transformer

Output
Probabilities

t
Softmax

{

Linear

[RMS Norm |

s f -)
, »%)

[SwiGLU Feed |

| Forward
&8 | f .
encoder | RMS Norm |
layer -)
,$
- ~ M
(GQA < .
| self-attention hamn
Vt KA @ j
[RMS Norm
i 7 Y
| Embedding \ Causal
T mask

Input Sequence RoPE

Training Recipes

AT

¢ Cross-validation is costly e

e On small-scale tasks like CIFAR-10, we can cross-validate most
hyper-parameters and run many experiments on a short time

windows

e For training LLMs, the situation is very different: full cross-
validation is computationally impossible and each run is
extremely expensive (many GPUs, long training time)

e We must rely on heuristics to predict good hyperparameters
within a limited and affordable compute budget.

. . . .49
@ Core ingredients to train a LLM -
e We've chosen the architecture type and describe the data, what’s le
e Which optimizer?
e Which learning-rate schedule?
e For how many tokens/steps?

e How should we initialise the weights?

e Let’s come back to the initial training loop.

o The training Loop

e Let’s unroll one optimizer step to make each operation explicit:

initialise layers 0p ~ 'y
for t=1... T |
sample & ~ Z', on worker i

NS ;
gt = Cllpm(a Z vf((gt;ft))
1=1
0t—|—17 St_|_1 — AdalnwntaA7€761752 (9t7 gt? St)

List of the remaining hyper-parameters:

[’y : initialisation rules

- g
o o . . . O
— | Explicit regularisation: = Z| Implicit regularisation:
S | m: the magnitude og clipping = = .
qi \: weight decay (£° regularisation)| © & "It leammg rate
= | Outimizer h - = i n : batch size
é ptimizer hyper parameters: E § T : maximal step
€, 81, B2: AdamW parameters © o

@ AdamW vs Adam
G — gt — vf(et—l) G B n)\9 |

v = Bovi—1 + (1 — B2)GY

. iy
T+ —
by =
: =
A 1 — B4 \
B my 2 Trt
Ht—et—l—nt'<\/@—t+€‘|‘)\"9t—l> etzet—l_nt.ﬁ+€
t

e Contrary to Adam, AdamW uses a decoupled weight decay, an this makes
AdamW invariant to rescaling.

e To remove instability (exploding gradients), clipping is often use so that:
(ga if gi|2 S Q,
g, it |lg|la > a.
\ g]l2

e The typical parameters choices are (and they are probably the last things to
cross validate if you haven’t identified divergence)

A\=10"1 €e=10"° ., =0.9 a=1 By = 0.95

@ Choosing the Learning Rate Schedule 52

e Assume we fix the optimizer hyperparameters, the batch size,
and the total number of steps. What remains is to choose the
learning rate schedule.

e The typical strategy to pick a learning rate is to use a schedule

that includes a warmup period 1w and a cosine decay rule:

(L

Tlstart + (npeak - nstart) T_’ 0 S t < Tw7

eak = //min t_Tw
\nmin+np k277 (1+COS(7TT T))7 TwStST

n(t) = 4

» Typical values are 7Tstart = 0, Mend = 1077 - Npear and Ty = 10727

e The remaining variable to specify are : the batch size, the
number of steps and the peak learning rate 7)peak: they depend
on the number of parameters P.

@ Chinchilla’s rule

e The "scaling law" describe how performance improve when compute C,
total number of tokens T or model size P increase. The dependency are
often expressed as power law.

Ref.: Scaling Laws for Neural Language Models
P*,T" = arg min loss(P,T)
P, T FLOPs=C
e Three strategies are proposed:

e Iix P, compute for multiple 7' e Isoflop, fix C'and optimizer over P, T

17
10*°

1008 ,

‘E: 108 | ::__/_‘-.- ?%m, ,/-‘V 'E"t ; 2:~ iid i . g
e Parametrize the loss asg I A B (' = 6PT
— | |
| Pa | Tﬁ
e The conclusion of Chinchilla’s rule is that ret: Training Compute-Optimal Large
Language Models
T ~ 20P~

However, this does not guide the design of the learning rate or batch size.

@ The DeepSeek approach

e Another approach, probably more frugal:

e Use a small budget to estimate small scale-parameters: fix
a model, vary tokens size and derive the optimal learning

o
oo

rate and batch size % . —a
Theak = A-C
n* = B.CP
e Using those hyper parameters. estimate varving 7 and P
9)
under a Similar Small budget " & 7B MHA 2T Token
321.6‘ # 673CQA2T Tcker
P>l< — P] ny ém-
512
T =A.C°

o
o

with v 40 =1

10°° 104 10% 10%4

-l
O_A

.54

Initialisation via muP

55

.56

- Initialisation in LLMs

e Initialisation has to keep activations and gradients in reasonable
range, avold one layer dominating, behave well with scale and depth

e In many models (e.g., DeepSeek, Llamad) activation initialisation is
given by:
N (0, 0'21) where o = 0.02
e At the same time, layers often include scalar normalizations (e.g., in
the attention layer) and rescalings that influence the effective
initialization. In fact, these effects can be understood using
invariance rules.

Consider: f(e) minimised with (9t_|_1 — Ht — UVf(H) and (9() ~ N(O, 0'2)

then any re- parametrization

{(f* 10— F(N0),~

) A > ()} leads to the same result

A2
proof: 2
A
6’t+1 — Ht)\2)\ Vf()\ 975) 90 ~ N()\2) SO: 9 —)\et

@ Mu-P rules Y

e This means there is an intrinsic notion of rescaling parameters, which
depends on the optimizer.

e Interestingly, there exist initialization rules that allow scaling with
depth and width, such as Mu-P

e The idea is to find the initialization and learning rate (with the rescaling
constrained) that lead to the largest effective update while keeping
training stable.

e The nice thing about Mu-P is that it provides simple rules for how to
scale layer size and adjust learning rates as layer width grows.

- Mu-P desirata

e When width grows infinitely:
e Activations vector should have O(1) -sized coordinates
e The output of the neural network should be O(1).
e The parameter update A@ should be maximal.

e 'This is the Mu-P initialisation.

Works well in practice!

.58

Conclusion

e Let’s move toward a lab on "tiny scaling laws".

.59

