

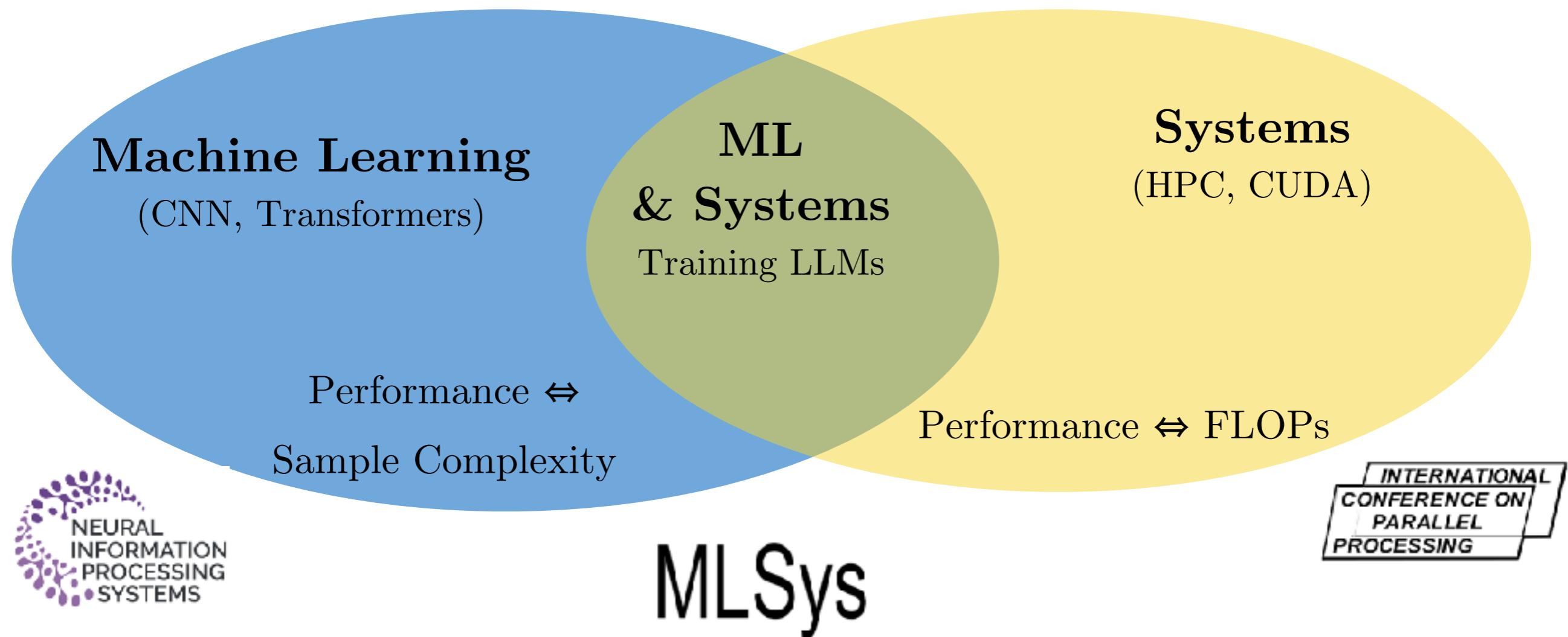
Lecture 1: Getting Started on Distributed LLM Training

Edouard Oyallon

edouard.oyallon@cnrs.fr

CNRS, ISIR

What this class is about and what it's not



Before we start. . .

- **Prerequisites:** I will assume you already know Python and PyTorch.
- If you already have solid experience with distributed training, you may find parts of the class too introductory.
- **Course goal:** Give you practical tools to understand training workflows, optimization, and the link between High-Performance Computing (HPC) and Machine Learning.
- What this class is not: Not a math-heavy class, and not a pure programming class.

Covered Topics

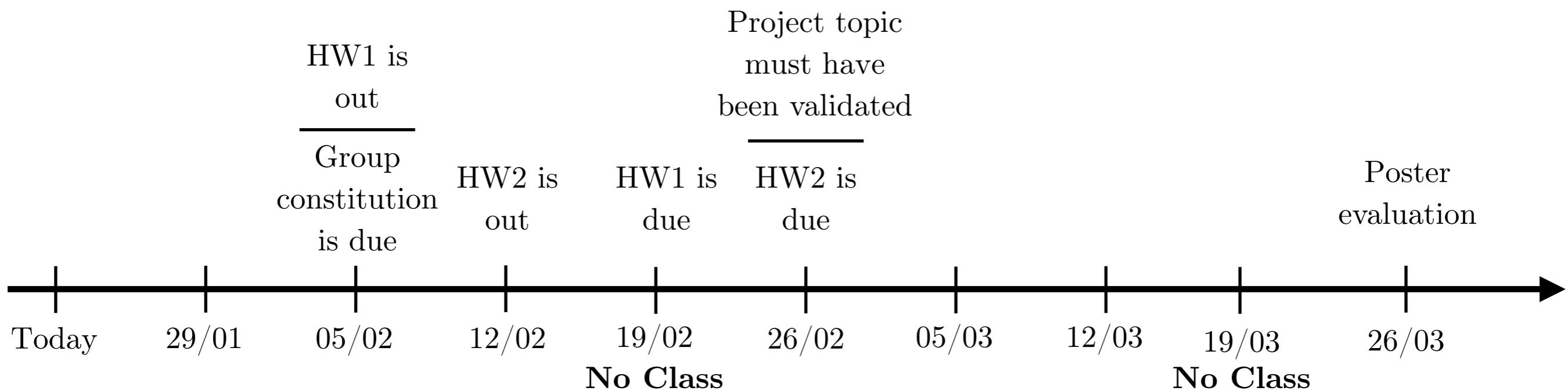
- **Lecture 1:** Transformers overview and the ML behind their training
- **Lecture 2:** Hardware fundamentals for training large models
- **Lecture 3:** Parallelization techniques for LLM training
- **Lecture 4:** Communication bottlenecks and Decentralized training
- **Lecture 5:** Post-training
- **Lecture 6:** Inference and serving
- **Lecture 7** (tentative): Agentic AI
- **Lecture 8:** Grading

Typical Lectures

- A typical 4h class will correspond typically to about 1h55 of lectures, followed by a 10 minute break and 1h55 of lab.
- Resources: Unfortunately, we won't have access to GPU resources for this class . . .
- I assume everyone is a ChatGPT/LeChat/Claude/. . . user.
(so please don't hide yourselves or pretend you don't use it)
- On my side, I like honesty on this topic.

Grading

- You'll work in **pairs (groups of 2)** — please coordinate and communicate with your teammate.
- **Grading:** HW1 **25%**, HW2 **25%**, HW3/Project **50%**.
- **Project:** choose **one paper** (NeurIPS, MLSys, or similar) on those lectures topic. **Get my approval** that the topic is acceptable before you start.



What you will learn today

- Why analysing neural networks training is hard
- Data: what's used and why it matters
- Transformer architecture: the essentials
- An introduction to training recipes: how transformers are trained in practice

What is an LLM?

- An LLM (Large Language Model) is an **neural network trained on huge amounts of text** to *predict the next word* in a sentence and then specialised to a given task.
- LLMs rely on Transformers, and since 2017, their capacity and performance have kept increasing.
- They can generate, summarize, translate and answer questions in human-like language.

Why LLMs Are So Useful in ML?

- Part of the popularity of LLMs in ML is their ability to be used as
 - **Foundation Models:**
 - Trained once on massive, general-purpose data,
 - Then reused and adapted for many downstream tasks.
 - **In context learner:**
 - No retraining: can work in **zero-shot** or **few-shot** mode.
 - No gradient updates, no optimizer – yet they behave as if they “learn” the new task from the prompt (i.e., the input).
 - LLMs act as universal task interfaces: we change the *prompt*, not the *model*.

The two phases of LLM training

- The process of training an LLM is particularly costly and can be split in two phases:
 - **Pre-training** (generic learning):
 - The model is trained once on a massive corpus of raw text
 - It aims to learn general language patterns, world knowledge, and basic reasoning skills.
 - **Post-training** (specialisation & alignment):
 - The pre-trained model is typically further trained on curated data and human feedback
 - It aims to specialise it for particular tasks (e.g. instruction following, coding, chat) and align it with safety & style constraints.

Distributed Optimization in a Nutshell

Setting

- Optimization aims at solving problems such that

$$\inf_{\theta \in \mathbb{R}^d} f(\theta)$$

where f has some regularity assumptions, such as L -smoothness:

$$\|\nabla f(\theta) - \nabla f(\theta')\| \leq L\|\theta - \theta'\|$$

- Typically f is an empirical risk, which has a finite sum structure with a regularizer:

$$f(\theta) = \frac{1}{n} \sum_{i=1}^n F(\theta, \xi_i) + \frac{\lambda}{2} \|\theta\|^2$$

and the simplest is to perform a gradient descent leading to algorithms of the type, for $\eta > 0$:

$$\theta_{t+1} = \theta_t - \frac{\eta}{n} \sum_{i=1}^n \nabla F(\theta_t, \xi_i) \quad \text{until} \quad f(\theta_t) - f(\theta^*) \leq \epsilon$$

- In this case, two relevant quantities are :
 $T(\epsilon)$: the number of steps to get to an ϵ -solution. Here: $G(\epsilon) = nT(\epsilon)$
 $G(\epsilon)$: the number of gradients oracle calls.

An embarrassingly parallel setting¹³

- How can we exploit the structure of $\frac{1}{n} \sum_{i=1}^n \nabla F(\theta, \xi_i)$?
- Assume bounded variance, i.e. $\frac{1}{n} \sum_{i=1}^n \|\nabla F(\theta, \xi_i) - \nabla f(\theta)\|^2 \leq \sigma^2$
- Let's introduce: $g_k(\theta) = \frac{1}{k} \sum_{j=1}^k \nabla F(\theta, \xi_{i_j})$ with $i_1, \dots, i_k \sim \text{Unif}(\{1, \dots, n\})$
- In this case, we have $\mathbb{E}[g_k(\theta)] = \nabla f(\theta)$ and $\text{Var}(g_k(\theta)) \leq \frac{\sigma^2}{k}$

also: $G(\epsilon, k) = kT(\epsilon, k)$
- We are in an embarrassingly parallel regime: can we choose the batch size k to minimise the complexity $G(\epsilon, k)$ or the number of steps $T(\epsilon, k)$?
- Let's study briefly this simplified setting to get some intuitions.

Example: convex setting

- For instance, assuming that $F(., \xi)$ is convex and L -smooth then, with the right step size using gradient descent:

$$\mathbb{E}[f(\theta_t) - f(\theta^*)] \leq \frac{LR^2}{t} + \frac{\sigma R}{\sqrt{t}}, \quad R = \|\theta_0 - \theta^*\|.$$

- This leads to: $T(\epsilon, k) = \Theta \left\{ \frac{LR^2}{\varepsilon} + \frac{\sigma^2 R^2}{k \varepsilon^2} \right\}$ with $G(\epsilon, k) = kT(\epsilon, k)$

- Two cases can be distinguished:

- Noise σ^2 dominates (right): then we can reduce the number of steps (time) while maintaining the total complexity, better pick $k = n$.
- Optimization term dominates (left): increasing k only increases the complexity, better pick $k = 1$.
- Does it bring any insights on Deep Learning training and the required batch-size k ?

Deep networks and theory: limitations

- For deep networks, many standard assumptions *fail*: regularity is unclear, and the gradient noise can be effectively unbounded for common nonlinearities.
- Even under very strong assumptions, we typically do not get usable guarantees for *optimal* hyperparameters (e.g. step size η , batch size) or the *optimal* value.
- Convexity allows sharp characterisations, but neural networks are highly non-convex: what works in convex settings need not work in non-convex ones, and vice versa.
- In practice, both batch size and learning rate *must* be tuned (e.g. by cross-validation)
- However, even when bounds are essentially vacuous, theory still plays a role as a **sanity check** and conceptual guide.

Proofs as a sanity check

- The typical assumption one will encounter in the literature are L smoothness (L -lipschitz gradients) and bounded variance.
- To prove convergence, one typically (implicitly or explicitly) relies on a Lyapunov function, $V : \mathbb{R}^d \rightarrow \mathbb{R}_+$ which has to satisfy for a gradient path $(\theta_t)_{t \geq 0}$:

$$d \frac{V(\theta_t)}{dt} = \langle \nabla V(\theta_t), \theta_t \rangle \leq 0$$

- Typically, one shows that additional conditions hold for those functions, e.g.:

$$\|\nabla V(\theta)\|^2 \geq \mu(V(\theta) - V^*) \quad \mu\text{-PL conditions}$$

$$d \frac{V(\theta_t)}{dt} \leq -\alpha V(\theta_t) \quad \text{strong convexity}$$

The difficulty is to find both the dynamic θ_t and Lyapunov function V .

The training loop

- The usual training loop of a Transformer is rather simple, assuming data are spliced across n workers via $\Xi = \bigcup_i \Xi_i$:

initialise layers

until completion, on worker i :

sample $\xi_t^i \sim \Xi^i$ // sample from the chunk of the data

$\text{loss}_t^i = f(\theta_t, \xi_t^i)$ // forward pass

$\text{loss}_t = \frac{1}{n} \sum_{i=1}^n \text{loss}_t^i$ // average losses

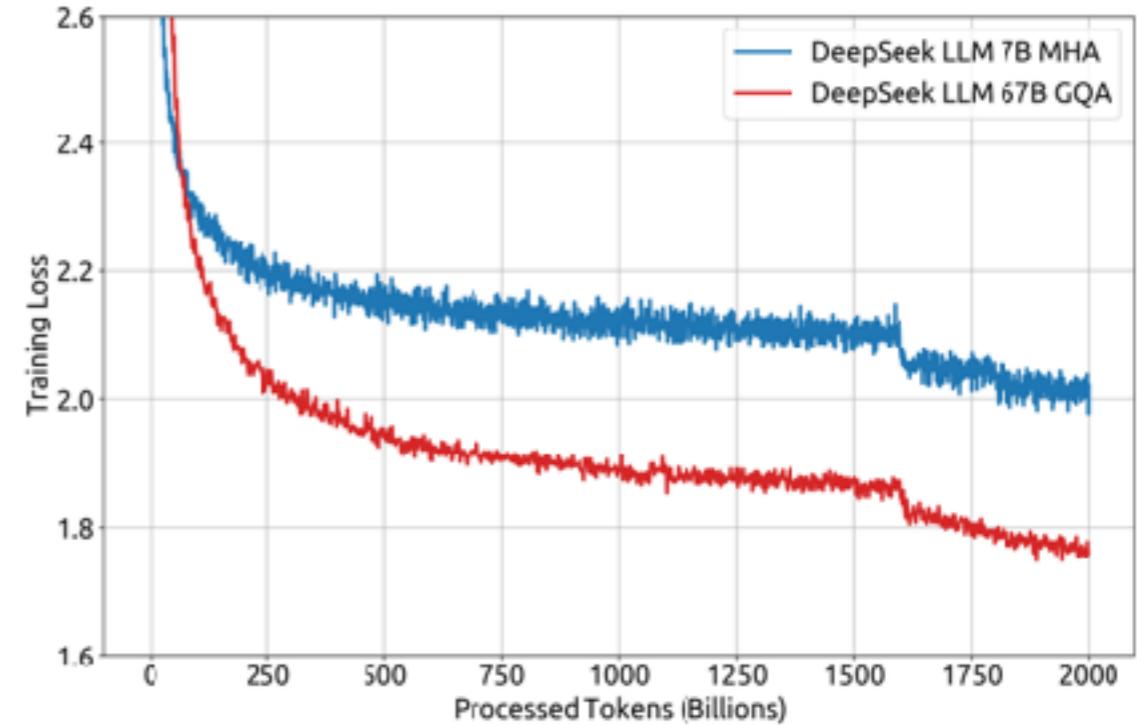
$g_t^i = \nabla f(\theta_t, \xi_t^i)$ // backward pass

$g_t = \frac{1}{n} \sum_{i=1}^n g_t^i$ // average gradients

$\theta_{t+1}, s_{t+1} = \text{Optimizer}(\theta_t, g_t, s_t)$ // update parameters

Example: Convergence of the previous training loop

In practice, we see such loss curves, with drops due to the learning-rate scheduler. Can we obtain basic guarantees in a simplified setting?



- Assume **Optimizer** = SGD
- Let $f^* = \inf_{\theta} f(\theta)$ and write $V(\theta) = f(\theta) - f^*$.
- Assume f is L -smooth and the gradient has variance σ^2 , then for any learning rate η , we have:

$$\inf_{0 \leq t < T} \mathbb{E} \|\nabla f(\theta_t)\|^2 \leq \frac{2(f(\theta_0) - f^*)}{\eta T} + L\eta\sigma^2.$$

Thus, it converges to a stationary point, but the limit point and rate are unclear, and it fails to explain much of the observed training behavior.

Feeding Large Language Models

Tokens: the fuel of LLMs

- LLMs consume sequences of **tokens**: discrete units (subwords, bytes, or image patches) produced by a tokenizer and fed directly to the model.
- Tokenization comes from NLP / text compression: it defines an (almost) invertible encoding of the raw signal (text, bytes, sometimes images).

Large Language Models (LLMs), such as GPT-3 and GPT-4, utilize a process called tokenization. Tokenization involves breaking down text into smaller units, known as tokens, which the model can process and understand. These tokens can range from individual characters to entire words or even larger chunks, depending on the model. For GPT-3 and GPT-4, a Byte Pair Encoding (BPE) tokenizer is used. BPE is a subword tokenization technique that allows the model to dynamically build a vocabulary during training, efficiently representing common words and word fragments. Although the core tokenization process remains similar across different versions of these models, the specific implementation can vary based on the model's architecture and training objectives.

- Each pretrained model is tied to a **fixed tokenizer**; changing it later would require retraining (at least) the input/output embeddings.

What matters in Tokenisation for LLMs?

- Fidelity: does $\text{decode}(\text{encode}(s)) = s$? (e.g., handle white space, code syntax, emojis, URLs, ...)
- Compression: how many tokens per byte (TPB) we get on typical data. Higher TPB = more tokens for the same text \rightarrow *worse* compression.
- Predictability: a sequence is predictable if the model (human, LLM) assigns high probability to the correct next token, as reflected by low bits per token (bpt) from the cross-entropy loss.
- Efficiency is thus measured as bits per byte $bpt \times TPB$. There is a trade off, as
 - very fine tokenization: a character level tokenisation has a TPB high and btp is low (easy predictions)
 - very coarse tokenisation: TPB is low, but predicting each token is very hard
- Some tokens have special roles: end-of-sequence (EOS), beginning-of-sequence (BOS), padding, and task markers such as `<think>`, `<code>`, etc.

Generally, TPB (French) > TPB (English)

PREDICTION AND ENTROPY OF
PRINTED ENGLISH, Shanon proves this with
N-grams instead of LLMs tokens dictionaries

From Tokens to Embeddings

- Tokens are mapped to **continuous vectors from \mathbb{R}^d** via an embedding layer, e.g., a look-up table of size $\mathbb{R}^{d \times n_{\text{vocab}}}$.
- Tokenizer leads to Compute trade-offs:
 - Fewer tokens for the same bytes \rightarrow **shorter sequences**, so more context fits in a fixed window.
 - But achieving this often requires a **larger vocabulary**, which increases embedding memory and latency.
- This raises the key question: How should we design our tokenizer to balance these costs?
- One of the solution is *Byte per Encoding*: simple, fast to train, with good compression and predictability.

Training BPE

- BPE is a simple greedy way to move toward a more efficient code (fewer bits per byte) by collapsing frequent patterns into single symbols.
- It greedily minimizes the number of tokens needed to encode a training corpus (under a fix budget). The algorithm is as follow:
 - Initialise with the characters of the alphabet:
 $D \{ 'a', 'b', 'c', \dots \}$
 - **Count** all adjacent symbol pairs $w.w'$, $(w, w') \in \mathcal{D}$
 - Find the most frequent $f_{\bar{w}}$ pair with $\bar{w} = w.w'$
 - Aggregate $\mathcal{D} \leftarrow \mathcal{D} \cup \{\bar{w}\}$

Remark 1: at every merge, the total number of tokens decrease by $f_{\bar{w}}$ (and it is the largest drop possible)

Remark 2: we can't really prove generalisation to unseen data, no optimality guarantee on the number of token. In practice: reasonable

Fast BPE inference

- After training, we have an **ordered list of merges** (a ranked dictionary of token pairs), namely **rank**.
- To tokenize new text:
 - First, **pre-tokenize** into base symbols (characters or bytes).
 - Then, **greedily apply merges in rank order**: for each merge rule, replace all matching pairs in the sequence. This is computationally extensive.
- More efficient variant:
 - Scan the sequence once, record all adjacent token pairs.
 - Maintain a priority queue (heap) keyed by merge rank.
 - Repeatedly take the best pair from the heap, merge it, and update only neighboring pairs.

`rank["he"] = 1`

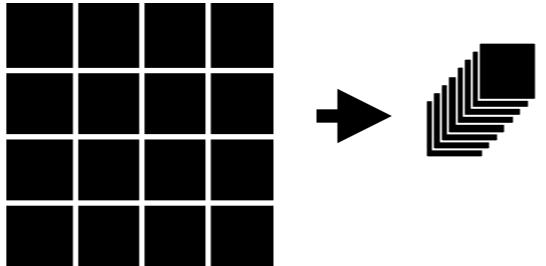
`rank["lo"] = 2`

`rank["llo"] = 3`

`h | e | l | l | o` \longrightarrow `he | l | lo` \longrightarrow `he | llo`

Remark: quasi-linear complexity: every successful merge replaces two tokens by one
/!\ this is not equivalent to scanning from left to right

Tokenisation in image (ViTs)

- For images, the simplest way in the spirit of a LLM is to directly embed images:
 - Split the image into a grid of fixed-size **patches** (e.g. 16×16 pixels).A 4x4 grid of black squares representing a 16x16 image. An arrow points to the right, leading to a stack of 16 smaller 4x4 grids, representing the 16 16x16 patch embeddings.
 - Flatten each patch and apply a linear projection \rightarrow **patch embedding** (a vector) so that they belong to \mathbb{R}^d .
 - Add **positional information** (which patch is where).
 - From now, treat those as text-tokens.

Multi-Modal tokenisation

- A key property of transformers is that they can process **any sequence of tokens**. To handle **multimodal data**, we need *everything* (text, images, etc.) in token form.
- Example (vision–language prompt):

“I find this image nice <img1> and this one too <img2>. What’s in them?”

Here, <img1> and <img2> are special tokens that stand for an image representation.

- Pipeline idea:
Text: tokenized into text tokens.
Images: encoded into **image tokens** (patch embeddings or discrete codebook IDs).
- The transformer then processes **one joint sequence**:
[text tokens ... <img1 tokens> ... <img2 tokens> ...].

Pretraining data in practice

- Modern LMs are trained on huge, mixed corpora rather than a single dataset.
- Many open datasets are built on top of Common Crawl or similar sources, which you can think of as an “*arXiv of the web*” that we then filter, clean, and remix.
- Scale matters (we often train on trillions of tokens), but quality matters more: deduplication, filtering, and smart mixtures usually beat “just add more noisy web”.

Dataset	Size	# Tokens	Type of data
FineWeb	44 TB	15 T	Web (English, filtered Common Crawl)
RefinedWeb	2.8 TB	0.6 T	Web (mostly English, filtered Common Crawl)
Dolma	9.6 TB	3.0 T	Mixed (web, academic, code, books, social)
SlimPajama	0.90 TB	630 B	Mixed (filtered from Common Crawl)
C4	0.81 TB	160 B	Web (English, filtered Common Crawl)
The Pile	0.83 TB	380 B	Mixed (22 English sources)
ROOTS	1.6 TB	340 B	Multilingual text (59 languages)
The Stack v2	68 TB	900 B	Source code

Largue Language Models Architectures

From RNNs to Transformers

- **Pre-2017:** NLP baselines were mostly RNN/LSTM/GRU encoder–decoders (seq2seq), i.e. recurrent architectures:
$$x_{n+1} = \phi(x_n, \dots, x_{n-L})$$
- **RNN bottlenecks:** inherently sequential (poor GPU/TPU utilization), vanishing/exploding gradients, and limited long-range context even with attention on top.
- Transformer (2017): replaces recurrence with self-attention, by processing all tokens in parallel.
- What this enables:
 - **Parallelism (beats recurrence):** full-sequence parallel compute leads to much faster training.
 - **Long-range dependencies:** attention connects any token pair directly.
 - **Simple, scalable block:** repeating generic **transformers blocks** scales cleanly to billions of params

Transformers!

Main Transformer Families

- **Encoder-only:**

Bidirectional attention over *all* tokens

Great for understanding tasks (classification, retrieval, etc.)

Not natively generative (usually trained with masked LM)

Examples: BERT, RoBERTa

- **Decoder-only:**

Causal (left-to-right) attention with a mask

Naturally generative: next-token prediction

Can still do comprehension via prompting

Examples: GPT, LLaMA, Mistral

- **Encoder-decoder (seq2seq):**

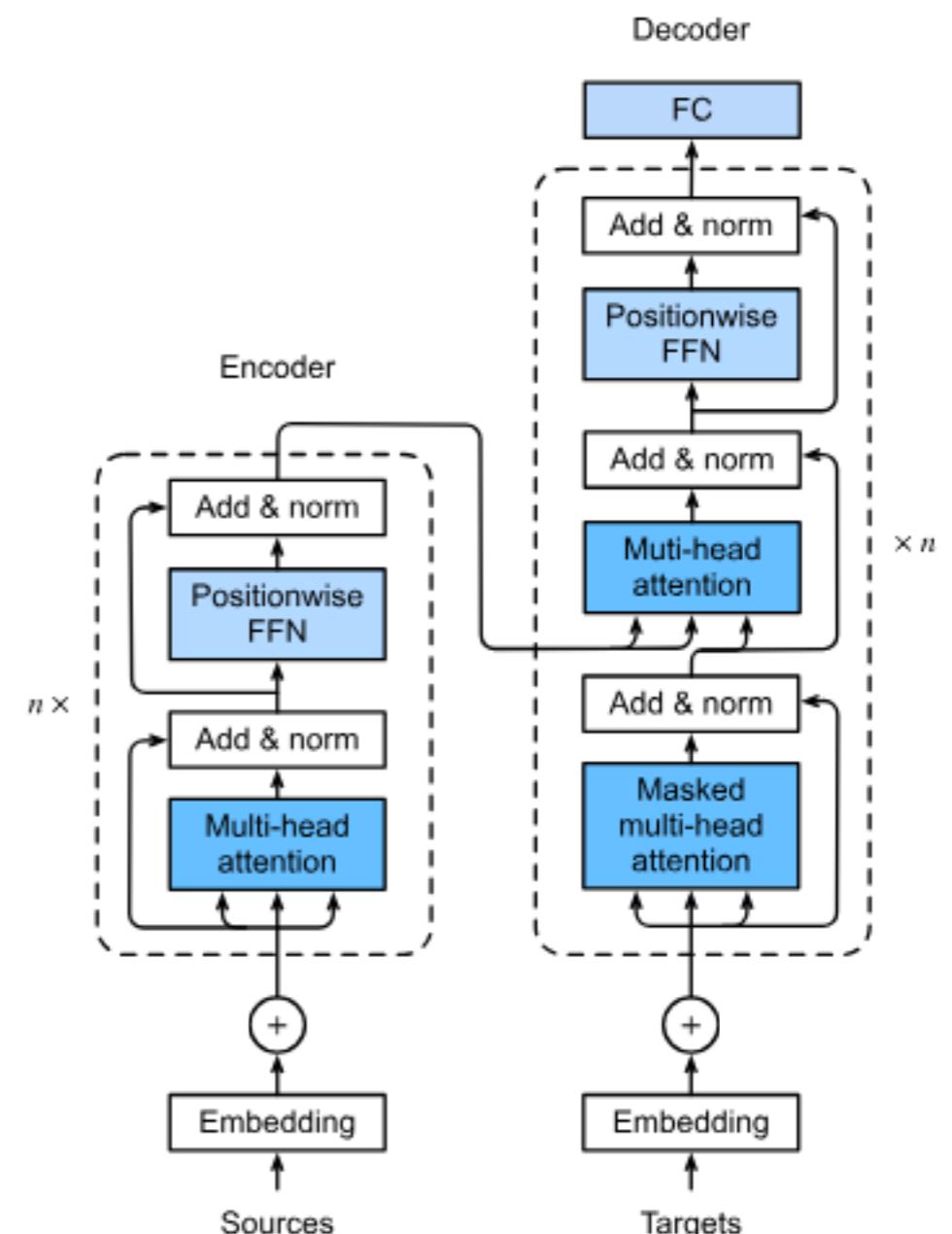
Encoder reads full input; decoder generates output with:

- self-attention (causal)

- **cross-attention** to encoder outputs at every layer

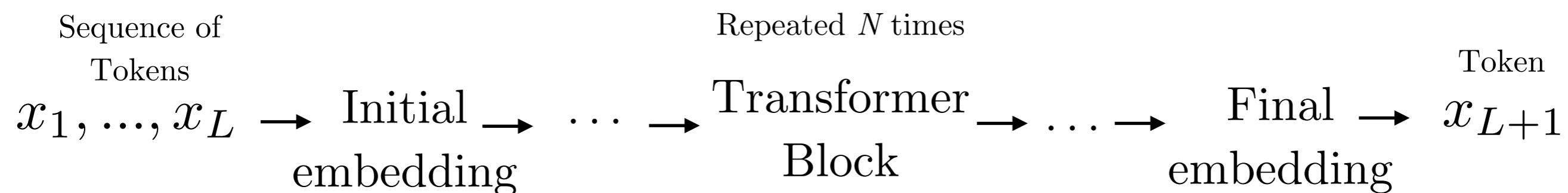
Strong for tasks needing full context *before* generating, e.g. translation, summarisation, instruction tuning

Examples: T5, BART



Decoder-only Transformers

- A decoder-only Transformer is a stack of identical blocks, each combining **self-attention** and a **two-layer feed-forward network** (with residuals layer norm).



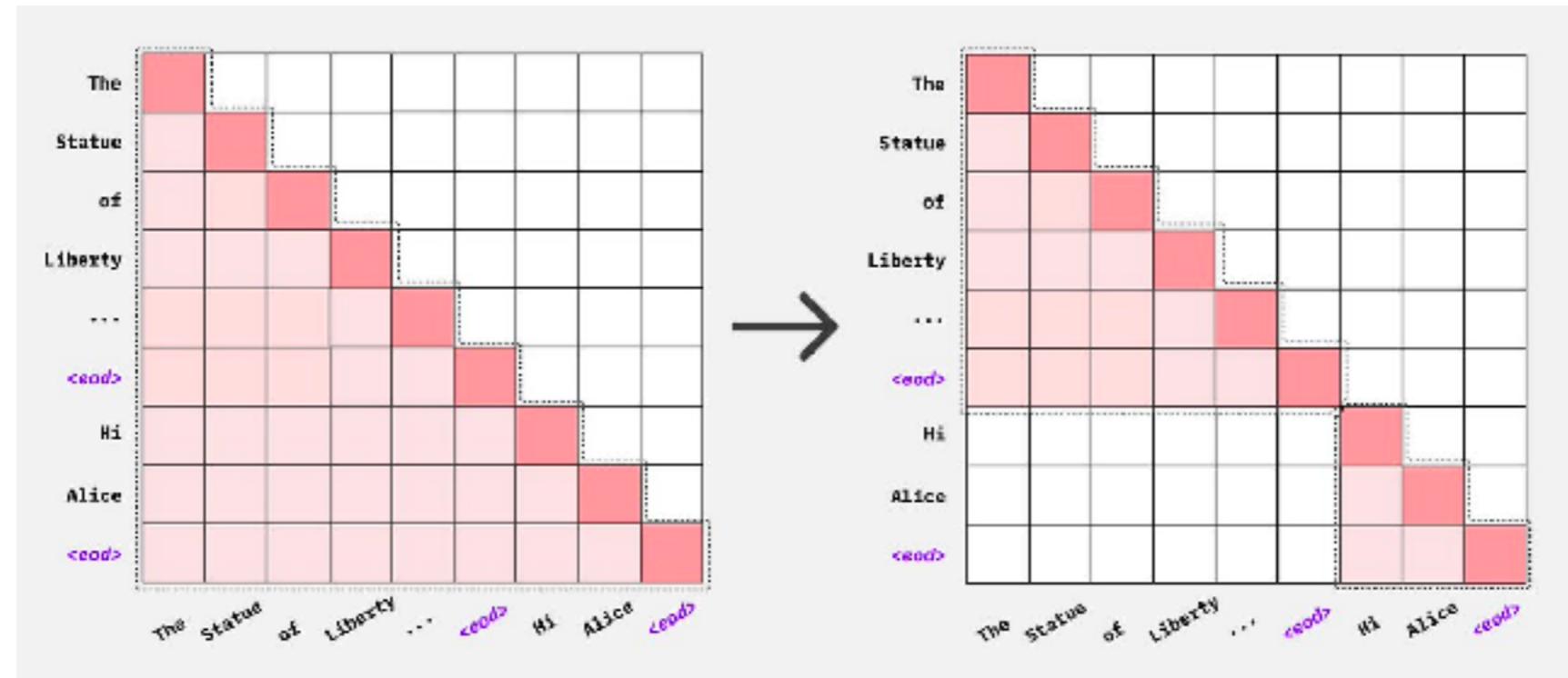
- **Transformer Blocks:**
 - **Attention layer:** performs dot-product between every tokens. Memory consuming but fast to compute.
 - **MLP layer:** performs at least 2 matrix multiplications, computationally intensive

Remark 1: a transformer layer preserves dimension across depth.

In the following, I'll focus on Llama-like models

Pre-training objective and packing

- Inputs are document packed, i.e., documents are concatenated and form a giant sequence (masking or sequence packing are possible)



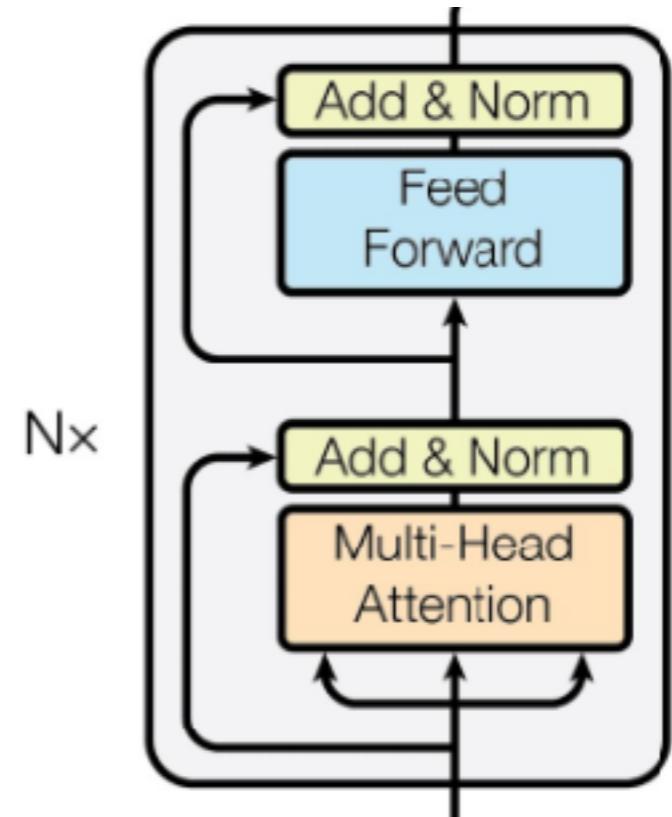
- Two possible ways to perform a prediction:
 - Next-token prediction:
It's a causal LM objective: predict token x_t from $x_{<t}$.
 - Fill In the Middle (FIM): remove a fraction 10% of the token to predict

[prefix] <FIM_MIDDLE> [suffix] <FIM_END> [middle]

Inside the Transformer

Description of a Transformer block³⁴

- **Goal:** a simple block we can stack hundreds of times that
 - uses only matrix multiplies (GPU-friendly)
 - can model long-range interactions
 - stays trainable at scale
- 3 components are composed:
 - Multi-head Attention:
 - *What:* each token attends to other tokens while keeping position (with a causal mask in LMs).
 - *Why:* lets the model route information flexibly and capture long-range dependencies in one step.
 - MLP (feed-forward network)
 - *What:* 2-layer MLP (often with expansion + non-linearity like SwiGLU).
 - *Why:* gives non-linear feature transforms and per-token capacity
 - RMSNorm + residual connections
 - *What:* normalize activations and add skip-connections around each sub-layer.
 - *Why:* keep activations **well-scaled**, stabilize gradients, and make it possible to train **very deep stacks** of identical blocks.



FLOPs count

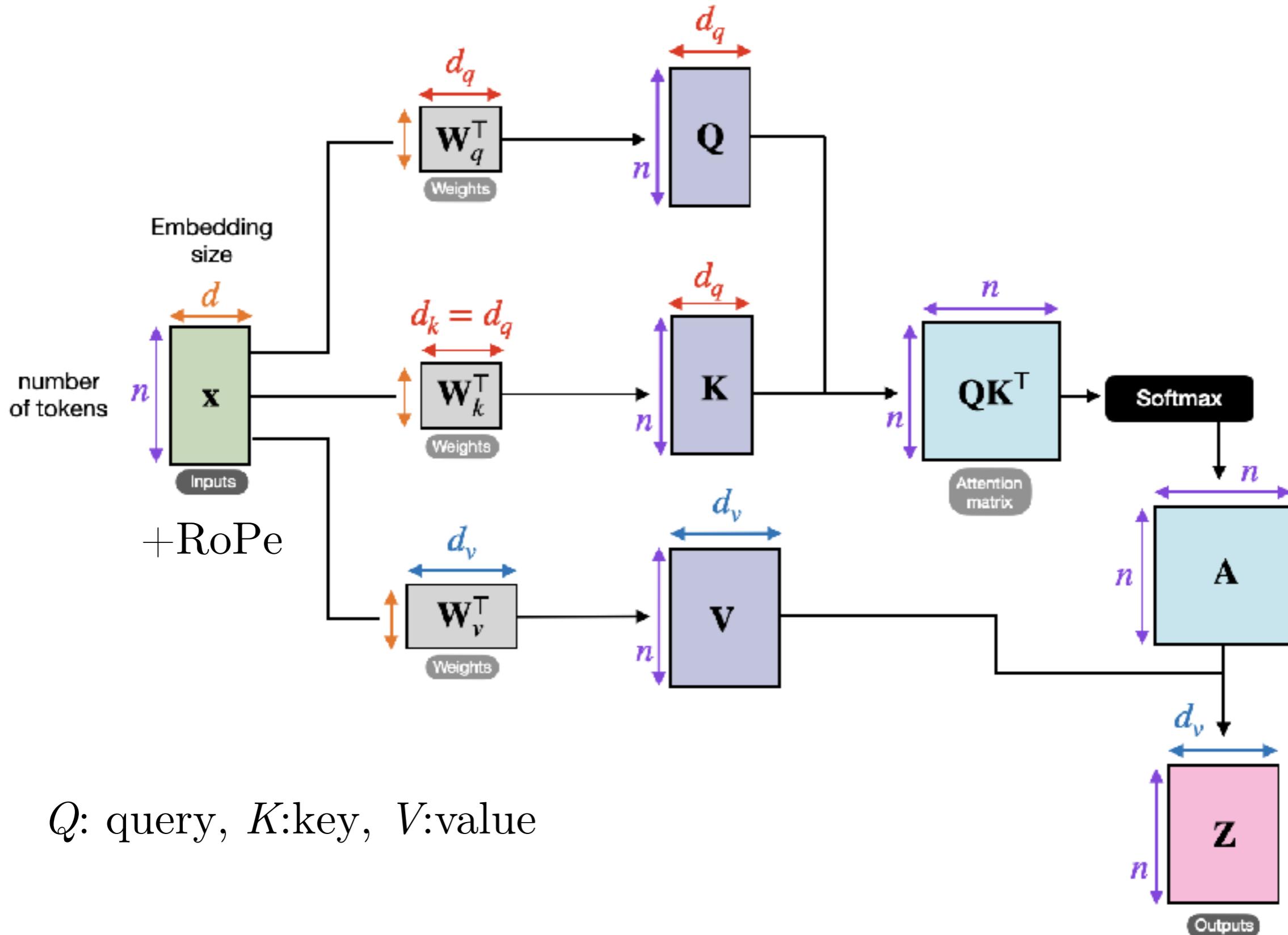
- A Floating Point Operation (FLOP) is one of the elementary operations performed by a computation unit. We use it to measure training/inference compute and to size jobs.
- FLOPs guide LLM architecture design; the goal is high *effective* FLOPS to reduce training time and avoid wasting GPU hours
- We'll see in the next lecture that wall-clock time depends also on other considerations (e.g., IO access)

$A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n$ what are the FLOPS to obtain $Ax \in \mathbb{R}^m$?

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \longrightarrow m(2n - 1) \text{ FLOPS}$$

Remark: “**FLOP** vs **FLOPs** vs **FLOPS**: FLOP=one operation; FLOPs=operation **count**; FLOPS=operations **per second**.

The attention layer



RoPe (Rotary Positional Embedding)

How transformers learn about order

- The **goal of RoPe is to** give self-attention a sense of **token order** without fixed positional vectors. It relies on a maximum context length N .
- The idea of a RoPe is to encode the position " l " of a token $x_l \in \mathbb{R}^d$ via

$$x_l = [x_l^r, x_l^i], x_l^r, x_l^i \in \mathbb{R}^{d/2} \quad \text{and to define} \quad \hat{x}_l = (x_r + i x_i) e^{2\mathbf{i}\pi \frac{l}{N}}$$

- Why is the positional encoder like this? Fourier flavour and covariance to translation!

Let $(Lx)_l \triangleq x_{l+1}$ then $\widehat{Lx}_l = e^{\frac{2\pi i}{N}} \cdot \hat{x}_l$ (translating is a multiplication)

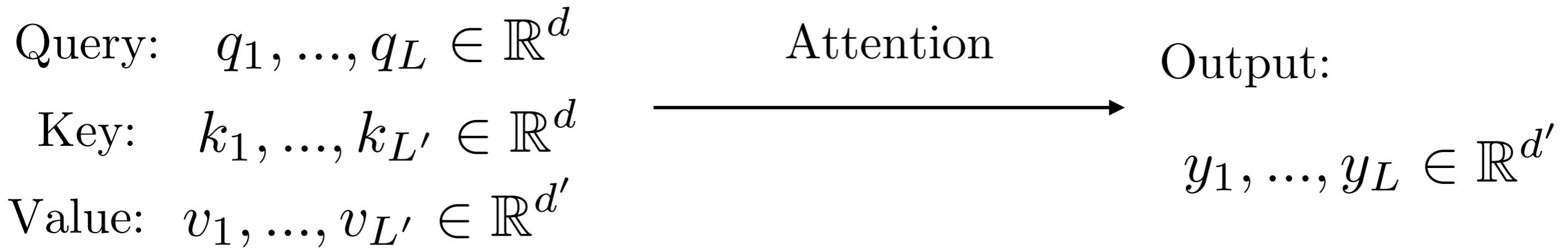
Also, relative positions are well encoded: $\hat{x}_l^* \hat{x}_k = e^{i \frac{2\pi(k-l)}{N}} x_l^\top x_k$

Attention layers

Let the "stable implementation" of the softmax:

$$\sigma : \mathbb{R}^{L'} \rightarrow \mathbb{R}^{L'}, \quad \sigma(x)_i = \frac{\exp(x_i - \max_k x_k)}{\sum_{j=1}^{L'} \exp(x_j - \max_k x_k)}$$

The attention layer processes:



Then, perform the attention step:

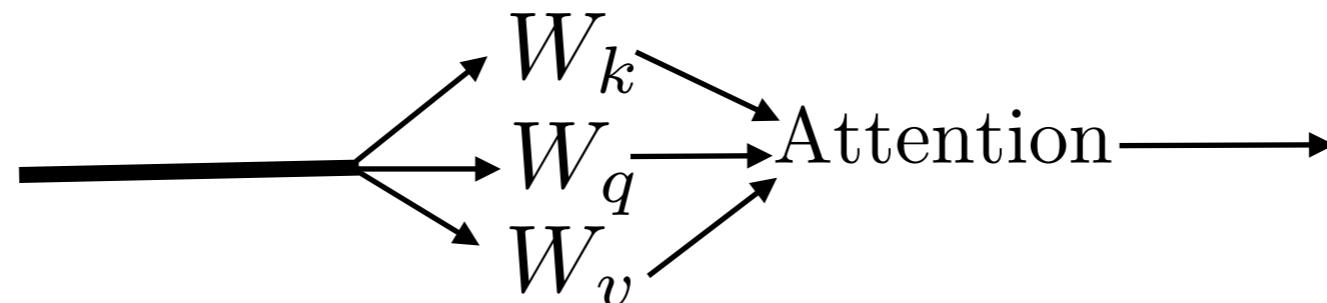
$$y_l = \sum_{l'=1}^{L'} \sigma(q_l^\top k_{l'}) v_{l'} \quad \text{or more simply} \quad y = \sigma(qk^\top)v$$

FLOPs: $LL'(2d + 5 + 2d')$

- Note: Including the previously introduced RoPE, these operations are not permutation-invariant, they preserve positional information.
- Note: During training, $L = L'$

Multi-Head Attention

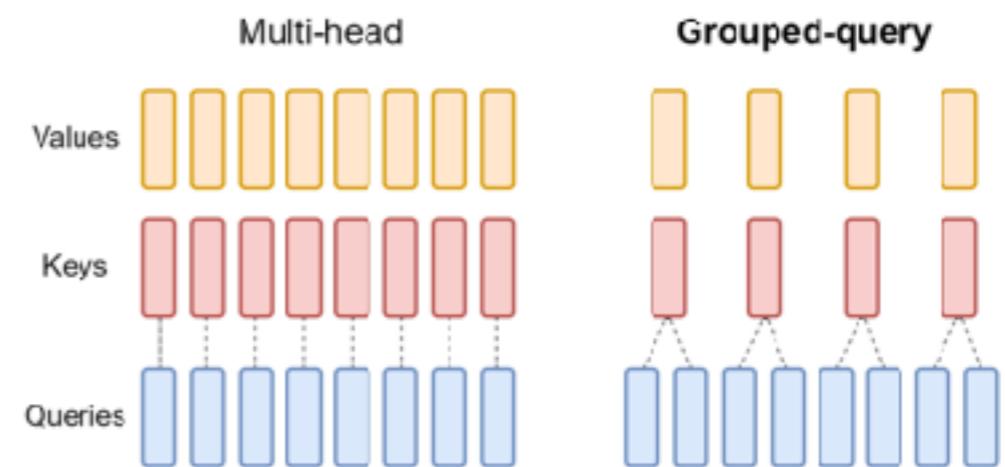
- Attention is always combined with linear layers



- Some structural constraints and redundancies (to save FLOPs) can be introduced into these layers while still maintaining good expressivity.
- A typical design uses H_q independent attention modules ("heads") for the queries, while only H_{kv} key-value heads are instantiated and shared across several query matrices.

$$W_q^{h'} \in \mathbb{R}^{d \times m}, h \leq H_q$$

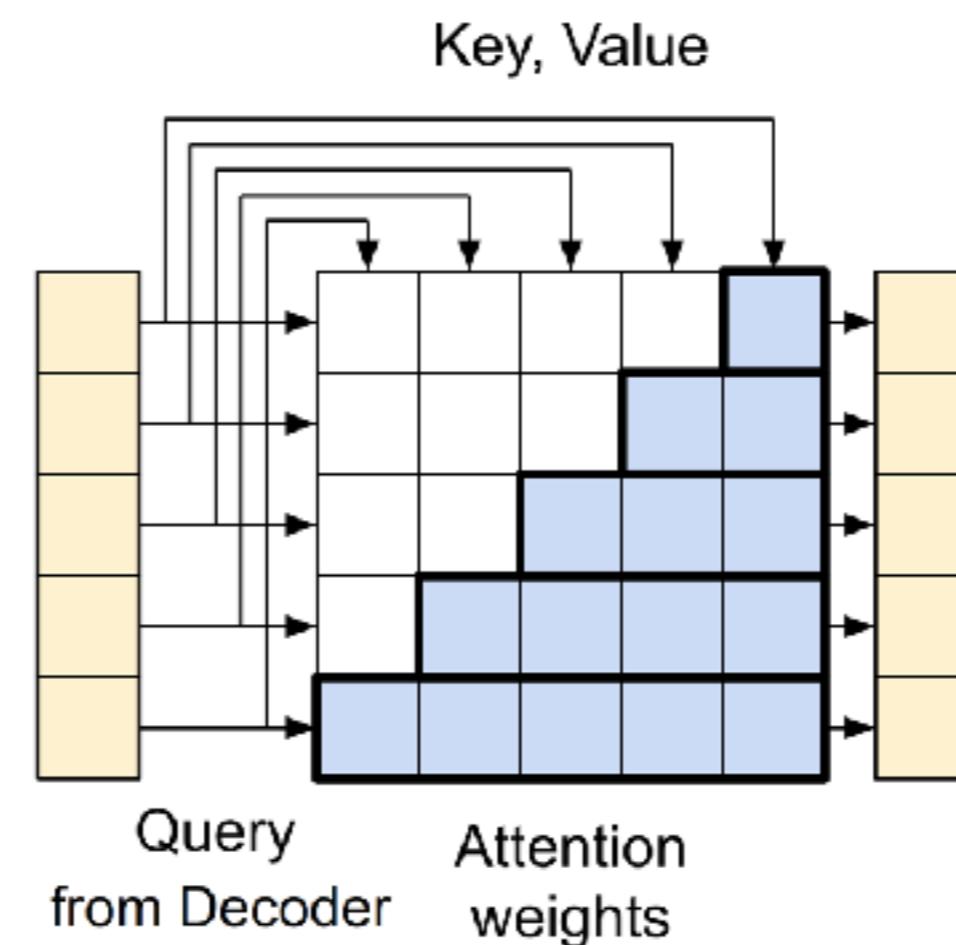
$$W_k^h, W_v^h \in \mathbb{R}^{d \times m}, h \leq H_{kv},$$



- Self-attention: typically $H_q = H_{kv} = 1, m = d$
- Multi-head Attention $H_{kv} = H_q > 1, H_q m = d$
- Group Query Attention: $H_q > H_{kv} > 1, H_q m = d$

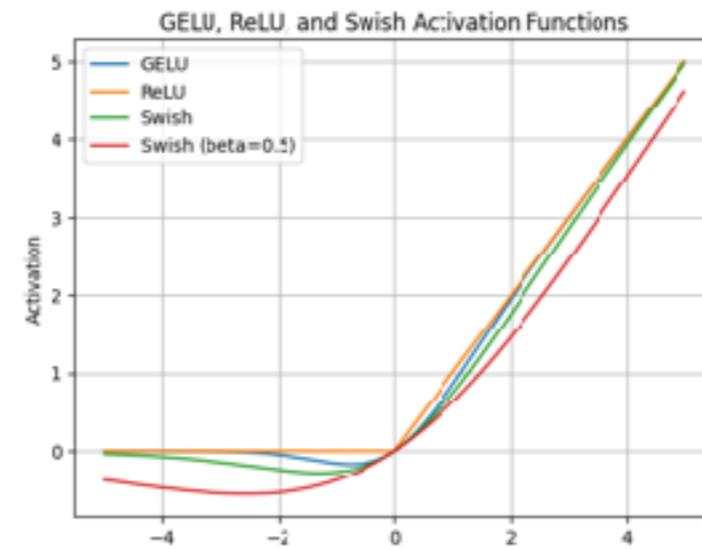
Causal masks in Decoder-only

- The goal of a causality mask is to make training match inference: the model should not use future tokens to predict the next token ("auto-regressive" behaviour).
- A binary mask is applied to attention scores
- Position i can only attend to positions $\leq i$.



MLP layer

- Fix a pointwise non linearity: $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ so that $\sigma(0) = 0$



- A successful strategy, used in Llama family models, is to "gate" the activations and to slightly increase the dimensionality.

$$W_b, W_q \in \mathbb{R}^{d \times m} \quad \text{and} \quad W_o \in \mathbb{R}^{m \times d}$$

$$\text{so that} \quad y = W_o(\sigma(W_q x) \odot (W_b x))$$

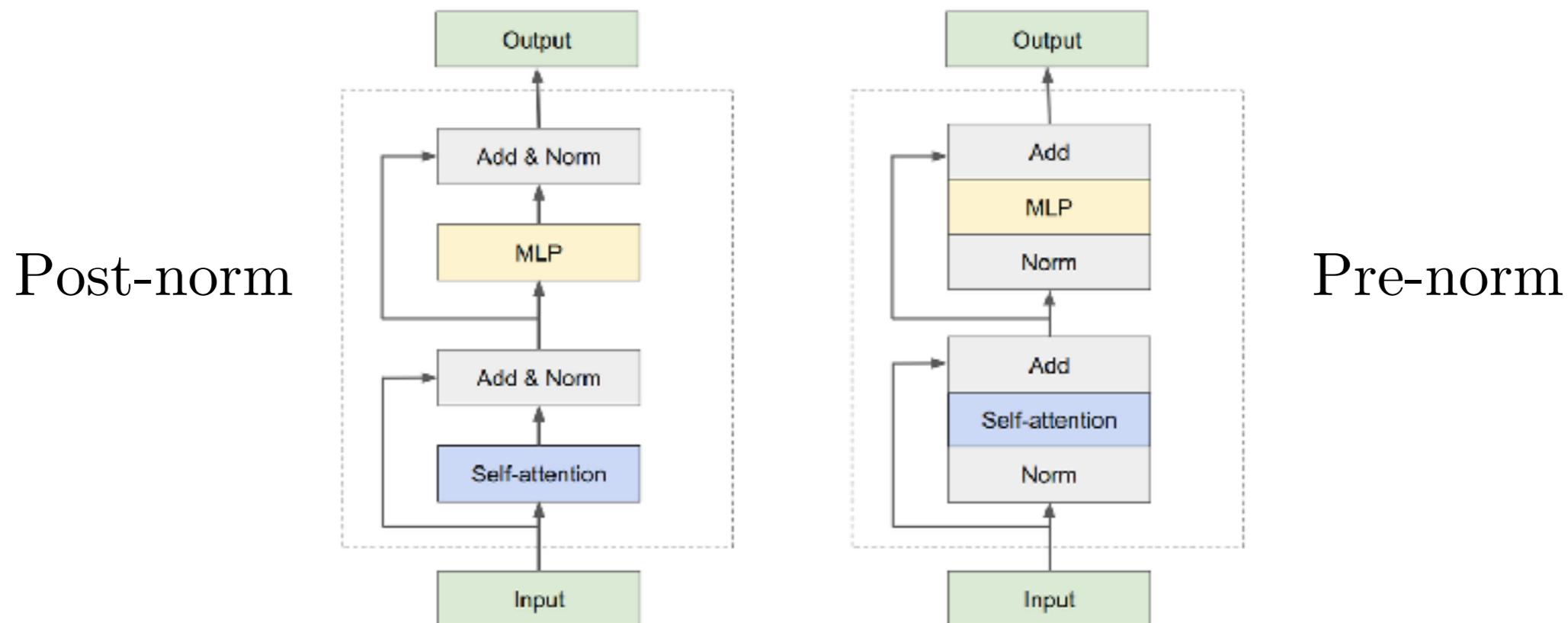
- Typically, m is an expansion factor that increases dimensionality (expressiveness)

RMS norm

- Root Mean Square norm is defined as a normalisation used between layers, with a learnable parameter $\gamma \in \mathbb{R}^d$ and $\epsilon > 0$.

$$\text{RMSNorm}(x) = x \odot \frac{\gamma}{\sqrt{\epsilon + \frac{1}{n} \sum_{i=1}^n x_i^2}},$$

- RMS norm is much more amenable to parallelisation than a batch norm!! (no cross-communications between samples)
- Two strategies (post-norm seems to take the lead)



Forward: the " $2P$ " rules

- Let's provide a simple heuristic to quickly know the number of FLOPs of a model with P parameters, per token.
- Typically, the context length L is much smaller than the ambient dimension d .
- Thus the FLOPs are mostly due to the linear layers rather than the attention.
- If we neglect also the FLOPs due to the RMS, we end up with

$$\text{FLOPs/token} = 2P$$

What about the backward?

- Let: $x \in \mathbb{R}^d$, $A \in \mathbb{R}^{n \times d}$ and $\ell : \mathbb{R}^n \rightarrow \mathbb{R}$
Fix $f(x, A) = \ell(Ax)$ so that $\nabla \ell(Ax) \in \mathbb{R}^n$
- What is the fully complexity of a GEMM (General Matrix Multiply)?

Forward: $f(x, A) = \ell(Ax) \longrightarrow 2nd$

Backward of the inputs: $\nabla_x f(x, A) = A^\top (\nabla \ell(Ax)) \in \mathbb{R}^d$.
 $\longrightarrow 2nd$

Backward of the weights: $\nabla_A f(x, A) = (\nabla \ell(Ax)) x^\top \in \mathbb{R}^{n \times d}$,
 $\longrightarrow 2nd$ (it's aggregated over a mini batch)

The total complexity is then $6nd$

Backward in Transformers

- Consequently, as for the forward pass, the methodology to have an approximation of the number of flops lead to 6P FLOPs per token for the backward pass.
- Note that some methodology do not take in account the embedding layer, or use the exact number of FLOPs including the context length.

Non embedding parameter

Ref.: DeepSeek LLM Scaling Open-Source
Language Models with Longtermism

$$6N_1 = 72 n_{\text{layer}} d_{\text{model}}^2$$

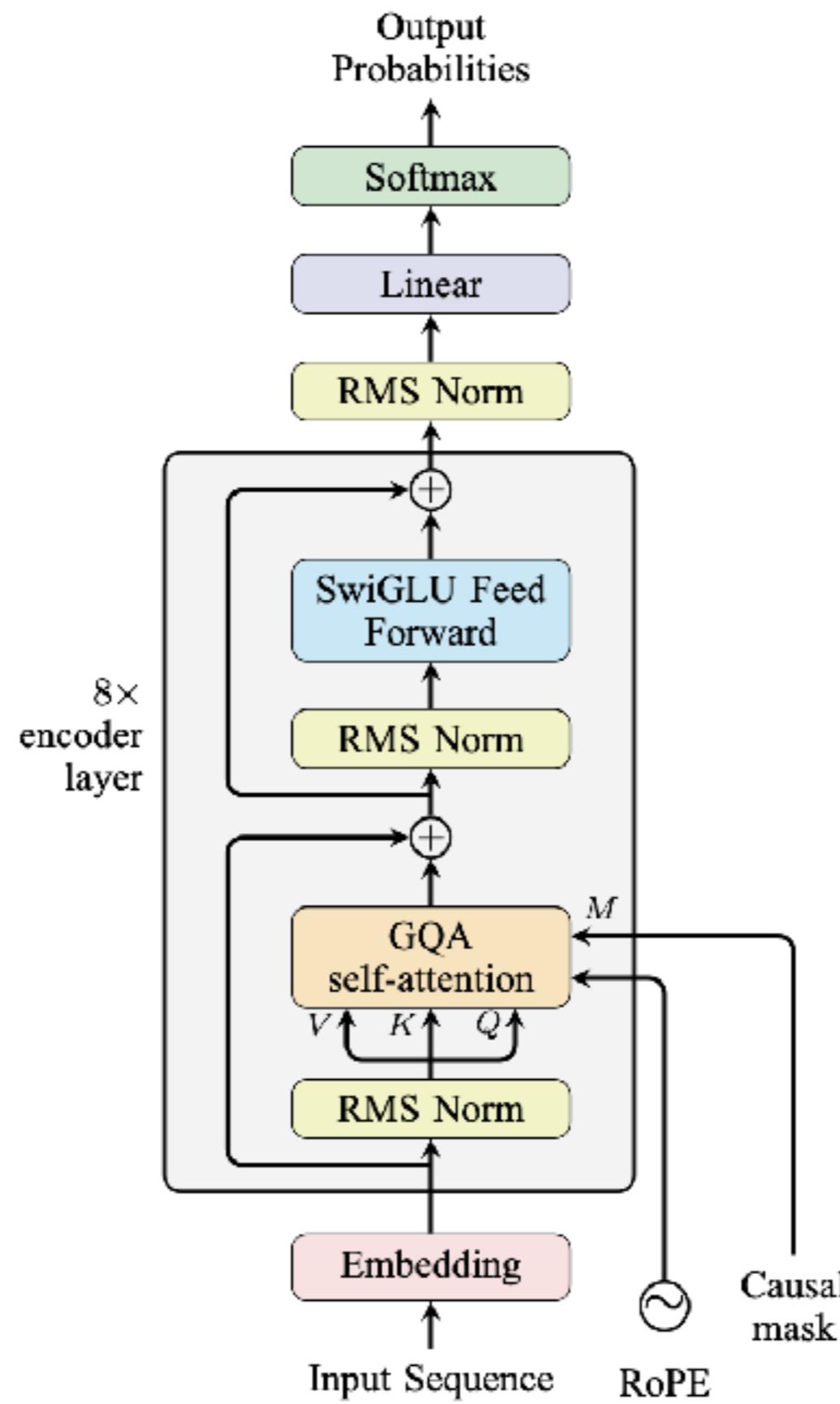
Total parameters

$$6N_2 = 72 n_{\text{layer}} d_{\text{model}}^2 + 6 n_{\text{vocab}} d_{\text{model}}$$

$$M = 72 n_{\text{layer}} d_{\text{model}}^2 + 12 n_{\text{layer}} d_{\text{model}} l_{\text{seq}}$$

"non-embedding FLOPs per token"

Full Anatomy of a Decoder-Only Transformer



Training Recipes

Cross-validation is costly

- On small-scale tasks like **CIFAR-10**, we can cross-validate most hyper-parameters and run many experiments on a short time windows
- For training **LLMs**, the situation is very different: full cross-validation is computationally impossible and each run is extremely expensive (many GPUs, long training time)
- We must rely on **heuristics** to *predict* good hyperparameters within a limited and affordable compute budget.

Core ingredients to train a LLM

- We've chosen the **architecture type** and describe the **data**, what's left?
 - Which optimizer?
 - Which learning-rate schedule?
 - For how many tokens/steps?
 - How should we initialise the weights?
 - Let's come back to the initial training loop.

The training Loop

- Let's unroll one optimizer step to make each operation explicit:

initialise layers $\theta_0 \sim \Gamma_0$

for $t=1 \dots T$

sample $\xi_t^i \sim \Xi^i$, on worker i :

$$g_t = \text{Clip}_m\left(\frac{1}{n} \sum_{i=1}^n \nabla f(\theta_t, \xi_t^i)\right)$$

$$\theta_{t+1}, s_{t+1} = \text{AdamW}_{\eta_t, \lambda, \epsilon, \beta_1, \beta_2}(\theta_t, g_t, s_t)$$

List of the remaining hyper-parameters:

Γ_0 : initialisation rules

mostly fixed

Explicit regularisation:

m : the magnitude of clipping

λ : weight decay (ℓ^2 regularisation)

Optimizer hyper parameters:

$\epsilon, \beta_1, \beta_2$: AdamW parameters

extrapolation/
cross-validation

Implicit regularisation:

η_t : learning rate

n : batch size

T : maximal step

AdamW vs Adam

$$G_t = g_t - \frac{g_t = \nabla f(\theta_{t-1})}{m_t = \beta_1 m_{t-1} + (1 - \beta_1) G_t} G_t = g_t + \lambda \theta_{t-1}$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) G_t^2$$

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$\theta_t = \theta_{t-1} - \eta_t \cdot \left(\frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} + \lambda \cdot \theta_{t-1} \right) - \theta_t = \theta_{t-1} - \eta_t \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$

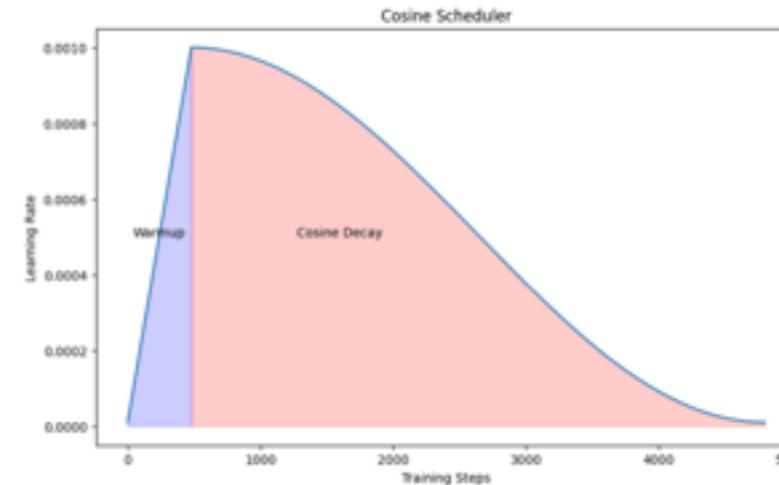
- Contrary to Adam, AdamW uses a decoupled weight decay, and this makes AdamW invariant to rescaling.
- To remove instability (exploding gradients), clipping is often used so that:
$$\text{Clip}_\alpha(g) = \begin{cases} g, & \text{if } \|g\|_2 \leq \alpha, \\ \frac{\alpha}{\|g\|_2} g, & \text{if } \|g\|_2 > \alpha. \end{cases}$$
- The typical parameters choices are (and they are probably the last things to cross validate if you haven't identified divergence)

$$\lambda = 10^{-1} \quad \epsilon = 10^{-8} \quad \beta_1 = 0.9 \quad \alpha = 1 \quad \beta_2 = 0.95$$

Choosing the Learning Rate Schedule

- Assume we fix the optimizer hyperparameters, the batch size, and the total number of steps. What remains is to choose the learning rate schedule.
- The typical strategy to pick a learning rate is to use a schedule that includes a warmup period T_w and a cosine decay rule:

$$\eta(t) = \begin{cases} \eta_{\text{start}} + (\eta_{\text{peak}} - \eta_{\text{start}}) \frac{t}{T_w}, & 0 \leq t < T_w, \\ \eta_{\text{min}} + \frac{\eta_{\text{peak}} - \eta_{\text{min}}}{2} \left(1 + \cos\left(\pi \frac{t - T_w}{T - T_w}\right) \right), & T_w \leq t \leq T. \end{cases}$$



- Typical values are $\eta_{\text{start}} = 0$, $\eta_{\text{end}} = 10^{-2} \cdot \eta_{\text{peak}}$ and $T_w = 10^{-2} \cdot T$
- The remaining variable to specify are : the batch size, the number of steps and the peak learning rate η_{peak} : they depend on the number of parameters P .

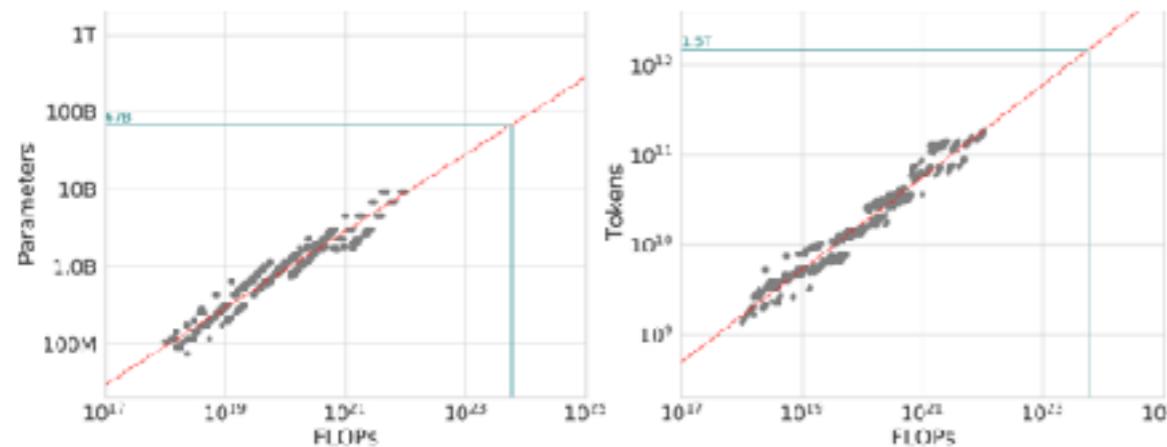
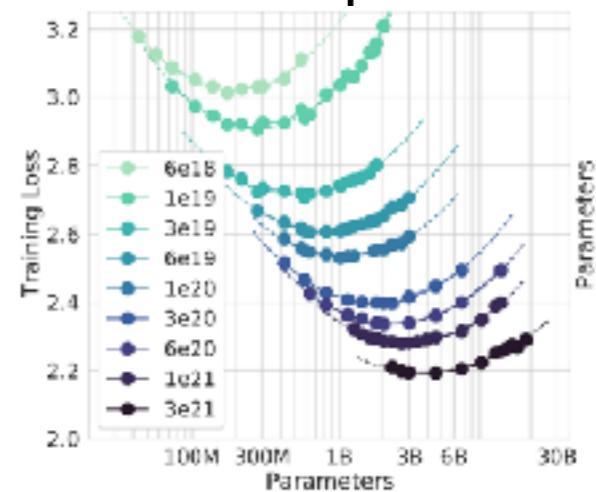
Chinchilla's rule

- The "scaling law" describe how performance improve when compute C , total number of tokens T or model size P increase. The dependency are often expressed as power law.

Ref.: Scaling Laws for Neural Language Models

$$P^*, T^* = \arg \min_{P, T, \text{FLOPs} = C} \text{loss}(P, T)$$

- Three strategies are proposed:
 - Fix P , compute for multiple T
 - Isoflop, fix C and optimizer over P, T



- Parametrize the loss as

$$\ell = L + \frac{A}{P^\alpha} + \frac{B}{T^\beta}$$

$$C = 6PT$$

- The conclusion of Chinchilla's rule is that

$$T^* \approx 20P^*$$

Ref.: Training Compute-Optimal Large Language Models

However, this does not guide the design of the learning rate or batch size.

The DeepSeek approach

- Another approach, probably more frugal:
 - Use a small budget to estimate small scale-parameters: fix a model, vary tokens size and derive the optimal learning rate and batch size

$$\eta_{\text{peak}}^* = A \cdot C^{-\alpha}$$

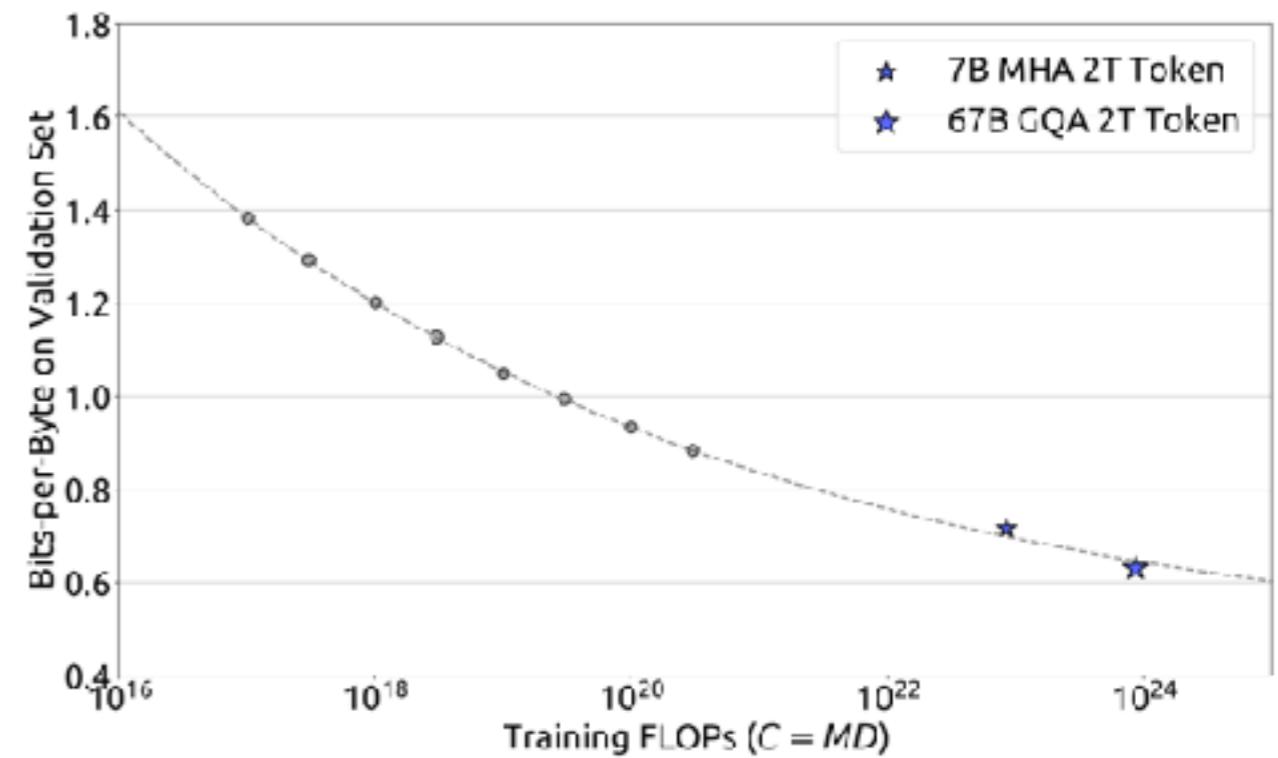
$$n^* = B \cdot C^\beta$$

- Using those hyper parameters, estimate varying T and P , under a similar small budget

$$P^* = \Gamma \cdot C^\gamma$$

$$T^* = \Delta \cdot C^\delta$$

with $\gamma + \delta = 1$



Initialisation via muP

Initialisation in LLMs

- Initialisation has to keep activations and gradients in reasonable range, avoid one layer dominating, behave well with scale and depth
- In many models (e.g., DeepSeek, Llama3) activation initialisation is given by:
$$\mathcal{N}(0, \sigma^2 \mathbf{I}) \text{ where } \sigma = 0.02$$
- At the same time, layers often include scalar normalizations (e.g., in the attention layer) and rescalings that influence the effective initialization. In fact, these effects can be understood using **invariance rules**.

Consider: $f(\theta)$ minimised with $\theta_{t+1} = \theta_t - \eta \nabla f(\theta)$ and $\theta_0 \sim \mathcal{N}(0, \sigma^2)$
 then any re-parametrization:

$$\{(f^\lambda : \theta \rightarrow f(\lambda\theta), \frac{\sigma}{\lambda}, \frac{\eta}{\lambda^2}), \lambda > 0\} \text{ leads to the same result}$$

proof:

$$\theta_{t+1} = \theta_t - \frac{\eta}{\lambda^2} \lambda \cdot \nabla f(\lambda \cdot \theta_t) \quad \theta_0 \sim \mathcal{N}(0, \frac{\sigma^2}{\lambda^2}) \quad \text{so:} \quad \theta_t^\lambda = \lambda \cdot \theta_t$$

Mu-P rules

- This means there is an intrinsic notion of rescaling parameters, which depends on the optimizer.
- Interestingly, there exist initialization rules that allow **scaling with depth and width**, such as **Mu-P**
- The idea is to find the initialization and learning rate (with the rescaling constrained) that lead to the largest effective update while keeping training stable.
- The nice thing about Mu-P is that it provides simple rules for how to scale layer size and adjust learning rates as layer width grows.

Mu-P desirata

- When width grows infinitely:
 - Activations vector should have $\Theta(1)$ -sized coordinates
 - The output of the neural network should be $\mathcal{O}(1)$.
 - The parameter update $\Delta\theta$ should be maximal.
 - This is the Mu-P initialisation.

Works well in practice!

Conclusion

- Let's move toward a lab on "tiny scaling laws".