
Edouard Oyallon
edouard.oyallon@cnrs.fr

CNRS, ISIR

Lecture 1:
Getting Started on

Distributed LLM Training

What this class is about and what it’s not
2

Machine Learning
(CNN, Transformers)

Systems
(HPC, CUDA)

Performance ⇔ FLOPs
Performance ⇔

Sample Complexity

ML
& Systems
Training LLMs

Before we start…

• Prerequisites: I will assume you already know Python and PyTorch.

• If you already have solid experience with distributed training, you may
find parts of the class too introductory.

• Course goal: Give you practical tools to understand training
workflows, optimization, and the link between High-Performance
Computing (HPC) and Machine Learning.

• What this class is not: Not a math-heavy class, and not a pure
programming class.

3

Covered Topics
• Lecture 1: Transformers overview and the ML behind their training

• Lecture 2: Hardware fundamentals for training large models

• Lecture 3: Parallelization techniques for LLM training

• Lecture 4: Communication bottlenecks and Decentralized training

• Lecture 5: Post-training

• Lecture 6: Inference and serving

• Lecture 7 (tentative): Agentic AI

• Lecture 8: Grading

4

Typical Lectures

• A typical 4h class will correspond typically to about 1h55 of
lectures, followed by a 10 minute break and 1h55 of lab.

• Resources: Unfortunately, we won’t have access to GPU
resources for this class …

• I assume everyone is a ChatGPT/LeChat/Claude/… user.
(so please don’t hide yourselves or pretend you don’t
use it)

• On my side, I like honesty on this topic.

5

Grading
• You’ll work in pairs (groups of 2) — please coordinate and

communicate with your teammate.

• Grading: HW1 25%, HW2 25%, HW3/Project 50%.

• Project: choose one paper (NeurIPS, MLSys, or similar) on those
lectures topic. Get my approval that the topic is acceptable before you
start.

6

Today

Group
constitution

is due

19/02
No Class

19/03
No Class

Poster
evaluation

HW1 is
out

HW2 is
out

HW1 is
due

HW2 is
due

29/01 05/02 12/02 26/02 12/0305/03

Project topic
must have

been validated

26/03

What you will learn today

• Why analysing neural networks training is hard

• Data: what’s used and why it matters

• Transformer architecture: the essentials

• An introduction to training recipes: how transformers are trained in
practice

7

What is an LLM?

• An LLM (Large Language Model) is an neural network trained
on huge amounts of text to predict the next word in a sentence
and then specialised to a given task.

• LLMs rely on Transformers, and since 2017, their capacity and
performance have kept increasing.

• They can generate, summarize, translate and answer questions in
human-like language.

8

Why LLMs Are So Useful in ML?
• Part of the popularity of LLMs in ML is their ability to be used as

• Foundation Models:

• Trained once on massive, general-purpose data,

• Then reused and adapted for many downstream tasks.

• In context learner:

• No retraining: can work in zero-shot or few-shot mode.

• No gradient updates, no optimizer – yet they behave as if they
“learn” the new task from the prompt (i.e., the input).

• LLMs act as universal task interfaces: we change the prompt, not
the model.

9

The two phases of LLM training
• The process of training an LLM is particularly costly and can be split in two

phases:

• Pre-training (generic learning):

• The model is trained once on a massive corpus of raw text

• It aims to learn general language patterns, world knowledge, and basic
reasoning skills.

• Post-training (specialisation & alignment):

• The pre-trained model is typically further trained on curated data and
human feedback

• It aims to specialise it for particular tasks (e.g. instruction following,
coding, chat) and align it with safety & style constraints.

10

Distributed Optimization in
a Nutshell

11

Setting
• Optimization aims at solving problems such that

where f has some regularity assumptions, such as L-smoothness:

• Typically f is an empirical risk, which has a finite sum structure with a
regularizer:

and the simplest is to perform a gradient descent leading to algorithms of
the type, for :

• In this case, two relevant quantities are :

12

<latexit sha1_base64="3QYsb5i+b+wHjvRulhPZ0x9ocEM=">AAACIXicbZBLTsMwEIYdnqW8CizZWFSIsqkShIBlBRuWBdGH1JTKcZ3WquNE9gSpRDkCp+AIbOEA7BA7xJKL4LZZ0JaRLH36/xnN+PciwTXY9pe1sLi0vLKaW8uvb2xubRd2dus6jBVlNRqKUDU9opngktWAg2DNSDESeII1vMHVyG88MKV5KO9gGLF2QHqS+5wSMFKncORy6XcSF/oMiGHsBgT6npfcpvfdFPuliXPcKRTtsj0uPA9OBkWUVbVT+HG7IY0DJoEKonXLsSNoJ0QBp4KleTfWLCJ0QHqsZVCSgOl2Mv5Qig+N0sV+qMyTgMfq34mEBFoPA890js7Vs95I/M9rxeBftBMuoxiYpJNFfiwwhHiUDu5yxSiIoQFCFTe3YtonilAwGU5tAT54TE0qzmwG81A/KTtnZefmtFi5zPLJoX10gErIQeeogq5RFdUQRU/oBb2iN+vZerc+rM9J64KVzeyhqbK+fwHo86Sg</latexit>

inf
✓2Rd

f(✓)

<latexit sha1_base64="JTGrn9t1tUeIOi+sHRZ8xy4vW3A=">AAACQnicbVBNa9tAEF25aeukX2pyzGWpCTgkNVIpSS6G0ELIMYU6NliOGK1X9uLVSuyOShyhv9Rf0Z+QSw/tJbfeSq45dO0oENsdWHjz3htm9kWZFAY976dTe7L29Nnz+vrGi5evXr9x326emzTXjHdYKlPdi8BwKRTvoEDJe5nmkESSd6PJ55ne/ca1Ean6itOMDxIYKRELBmip0D0NcMwRwgL3/LJdNfg+iDWwIrBNqWhg8iQsRNsvL2yjIJJAT5oP3v3gUoRiN3QbXsubF10FfgUapKqz0L0JhinLE66QSTCm73sZDgrQKJjk5UaQG54Bm8CI9y1UkHAzKOY/LumOZYY0TrV9CumcfTxRQGLMNImsMwEcm2VtRv5P6+cYHw0KobIcuWL3i+JcUkzpLD46FJozlFMLgGlhb6VsDDYstCEvbEExuSptKv5yBqvg/EPLP2j5Xz42jj9V+dTJNnlHmsQnh+SYnJIz0iGMfCfX5Bf57fxw/jh/ndt7a82pZrbIQjl3/wAkwbHE</latexit>

✓t+1 = ✓t �
⌘

n

nX

i=1

rF (✓t, ⇠i)
<latexit sha1_base64="MdOEh128SeaM76KnVpYnOzwssoU=">AAACHnicbVBLSgNBFOzxG/9Rl24ao5AIhhkRdRl041LBaCAzhp7Om6RJz8fuN0IccgFP4RHc6gHciVtdexE7MYKJFjQUVfV4r8tPpNBo2x/WxOTU9Mxsbm5+YXFpeSW/unap41RxqPJYxqrmMw1SRFBFgRJqiQIW+hKu/M5J37+6BaVFHF1gNwEvZK1IBIIzNFIjvxUUXWwDsgaWdn/49U7JlXBDXUi0kP1YwS7bA9C/xBmSAhnirJH/dJsxT0OIkEumdd2xE/QyplBwCb15N9WQMN5hLagbGrEQtJcNftOj20Zp0iBW5kVIB+rviYyFWndD3yRDhm097vXF/7x6isGRl4koSREi/r0oSCXFmParoU2hgKPsGsK4EuZWyttMMY6mwJEtKDp3PdOKM97BX3K5V3YOys75fqFyPOwnRzbIJikShxySCjklZ6RKOLknj+SJPFsP1ov1ar19Ryes4cw6GYH1/gUydKKc</latexit>

f(✓t)� f(✓⇤)  ✏until

<latexit sha1_base64="NeFHrk/1/dxQId3UCqJjdRVQr3A=">AAAB/nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9SRBLx4jmAckS5idTJIxs7PLTK8Ql4Cf4FU/wJt49Vc8+yNOkj2YxIKGoqqb7q4glsKg6347S8srq2vruY385tb2zm5hb79mokQzXmWRjHQjoIZLoXgVBUreiDWnYSB5PRjcjP36I9dGROoehzH3Q9pToisYRSvVWhzpldsuFN2SOwFZJF5GipCh0i78tDoRS0KukElqTNNzY/RTqlEwyUf5VmJ4TNmA9njTUkVDbvx0cu2IHFulQ7qRtqWQTNS/EykNjRmGge0MKfbNvDcW//OaCXYv/VSoOEGu2HRRN5EEIzJ+nXSE5gzl0BLKtLC3EtanmjK0Ac1sQTF4GtlUvPkMFknttOSdl7y7s2L5OssnB4dwBCfgwQWU4RYqUAUGD/ACr/DmPDvvzofzOW1dcrKZA5iB8/ULQE6WVQ==</latexit>

⌘ > 0

: the number of steps to get to an -solution.
<latexit sha1_base64="MOPRSQXuaLaP9myym24m7jztm+E=">AAACA3icbVDLSgNBEJyNrxhfUY9eBoMQL2FXRD0GvXiMkBckS5idzCZDZmeWmV4hLjn6CV71A7yJVz/Esz/iJNmDSSxoKKq66e4KYsENuO63k1tb39jcym8Xdnb39g+Kh0dNoxJNWYMqoXQ7IIYJLlkDOAjWjjUjUSBYKxjdTf3WI9OGK1mHccz8iAwkDzklYKVOvdxlseFCyfNeseRW3BnwKvEyUkIZar3iT7evaBIxCVQQYz qeG4OfEg2cCjYpdBPDYkJHZMA6lkoSMeOns5Mn+MwqfRwqbUsCnql/J1ISGTOOAtsZERiaZW8q/ud1Eghv/JTLOAEm6XxRmAgMCk//x32uGQUxtoRQze2tmA6JJhRsSgtbgI+eJjYVbzmDVdK8qHhXFe/hslS9zfLJoxN0isrIQ9eoiu5RDTUQRQq9oFf05jw7786H8zlvzTnZzDFagPP1CyMGmH4=</latexit>

T (✏)
<latexit sha1_base64="TrMQq2xpldk7qK0MKKB6C76+Jzs=">AAACA3icbVDLSgNBEJyNrxhfUY9eBoMQL2FXRD0GPegxgnnAZgmzk9lkyOzMMtMrxJCjn+BVP8CbePVDPPsjTpI9mMSChqKqm+6uMBHcgOt+O7mV1bX1jfxmYWt7Z3evuH/QMCrVlNWpEkq3QmKY4JLVgYNgrUQzEoeCNcPBzcRvPjJtuJIPMExYEJOe5BGnBKzk35bbLDFcKHnaKZbcijsFXiZeRkooQ61T/Gl3FU1jJoEKYo zvuQkEI6KBU8HGhXZqWELogPSYb6kkMTPBaHryGJ9YpYsjpW1JwFP178SIxMYM49B2xgT6ZtGbiP95fgrRVTDiMkmBSTpbFKUCg8KT/3GXa0ZBDC0hVHN7K6Z9ogkFm9LcFuCDp7FNxVvMYJk0zireRcW7Py9Vr7N88ugIHaMy8tAlqqI7VEN1RJFCL+gVvTnPzrvz4XzOWnNONnOI5uB8/QIN85hx</latexit>

G(✏): the number of gradients oracle calls.

<latexit sha1_base64="BSMzCQHMChEgalsHzbthpbUtKgg=">AAACAHicbVDLSgNBEJz1GeMr6tHLYhA8hV0R9Rj04jGCeUCyhNlJbzJkdmaZ6RXikouf4FU/wJt49U88+yNOkj2YxIKGoqqb7q4wEdyg5307K6tr6xubha3i9s7u3n7p4LBhVKoZ1JkSSrdCakBwCXXkKKCVaKBxKKAZDm8nfvMRtOFKPuAogSCmfckjzihaqdWBxHChZLdU9ireFO4y8XNSJjlq3dJPp6dYGoNEJqgxbd9LMMioRs4EjIud1EBC2ZD2oW2ppDGYIJveO3ZPrdJzI6VtSXSn6t+JjMbGjOLQdsYUB2bRm4j/ee0Uo+sg4zJJESSbLYpS4aJyJ8+7Pa6BoRhZQpnm9laXDaimDG1Ec1uQD5/GNhV/MYNl0jiv+JcV//6iXL3J8ymQY3JCzohPrkiV3JEaqRNGBHkhr+TNeXbenQ/nc9a64uQzR2QOztcvpsqXuw==</latexit>✏ <latexit sha1_base64="vi+0U8yTqVstAC1OO0gjBZI/3AQ=">AAACEnicbVDLSgMxFM34rPU16kZwEyxC3ZQZEXUjFF3oskJf0A4lk95pQzOZIckItdSv8BPc6ge4E7f+gGt/xLQd0LYeuHByzr3c3OPHnCntOF/WwuLS8spqZi27vrG5tW3v7FZVlEgKFRrxSNZ9ooAzARXNNId6LIGEPoea37se+bV7kIpFoqz7MXgh6QgWMEq0kVr2/k2+CbFiPBLHl6L8+2jZOafgjIHniZuSHEpRatnfzXZEkxCEppwo1XCdWHsDIjWjHIbZZqIgJrRHOtAwVJAQlDcYXzDER0Zp4yCSpoTGY/XvxICESvVD33SGRHfVrDcS//MaiQ4uvAETcaJB0MmiIOFYR3gUB24zCVTzviGESmb+immXSEK1CW1qi2a9h6FJxZ3NYJ5UTwruWcG9O80Vr9J8MugAHaI8ctE5KqJbVEIVRNEjekYv6NV6st6sd+tj0rpgpTN7aArW5w8UJZ3K</latexit>

G(✏) = nT (✏)Here:

<latexit sha1_base64="iAZQXCLO1nwrDYwHnnEBJB52040=">AAACRnicbVDBTttAEB2H0gKFNtBjL6tGFXAgsivUckT00kMPIJGAFEfReDMmq6zXZndcKUT5Kb6CT2iPbe+9VVzZGCOV0Cet9PTeG83sSwqtHIfhj6Cx9Gz5+YuV1bWX6xuvXjc3t7ouL62kjsx1bs8TdKSVoQ4r1nReWMIs0XSWjD/P/bNvZJ3KzSlPCupneGFUqiSylwbNr3GXLIvYYKJRpDsxj4hxd29B2N6tcrGmS/EwUhl7tV9pg2YrbIcVxFMS1aQFNY4Hzd/xMJdlRoalRud6UVhwf4qWldQ0W4tLRwXKMV5Qz1ODGbn+tPr1TLz3ylCkufXPsKjUfyemmDk3yRKfzJBHbtGbi//zeiWnB/2pMkXJZOT9orTUgnMxr1AMlSXJeuIJSqv8rUKO0KJkX/SjLazGVzPfSrTYwVPS/dCOPrajk/3W4VHdzwq8hXewAxF8gkP4AsfQAQnX8B1+wq/gJvgT/A1u76ONoJ55A4/QgDt3TbFP</latexit>

krf(✓)�rf(✓0)k  Lk✓ � ✓0k

<latexit sha1_base64="Ux5DKuC1m3Q4vwxOtgDNH90QtH8=">AAACSnicbVDLSiNBFK3ORMe3cVy6KQyCooTuIKMbQUYQlxFMIqRjU125bYpUVzdVt2UyTX5rvsIfENyJfoA7cWMl6YWvCwWHc87l3DphKoVB171zSj/KM7M/5+YXFpeWV1Yra79aJsk0hyZPZKIvQ2ZACgVNFCjhMtXA4lBCOxycjPX2DWgjEnWBwxS6MbtWIhKcoaWCSiPa9rEPyHaO/EgzTj3lmywOcnHkja4UPS3kPf+vCMTO7tTkS5vQY7Tut0Dj1DGBV/WgUnVr7mToV+AVoEqKaQSVB7+X8CwGhVwyYzqem2I3ZxoFlzBa8DMDKeMDdg0dCxWLwXTzyc9HdMsyPRol2j6FdMK+38hZbMwwDq0zZtg3n7Ux+Z3WyTA67OZCpRmC4tOgKJMUEzqukfaEBo5yaAHjWthbKe8z2w3asj+koBj8G9lWvM8dfAWtes37XfPO96vHf4p+5sgG2STbxCMH5JickQZpEk7+k3vySJ6cW+fZeXFep9aSU+yskw9TKr8Bp+2y1w==</latexit>

f(✓) =
1

n

nX

i=1

F (✓, ⇠i) +
�

2
k✓k2

• How can we exploit the structure of ?

• Assume bounded variance, i.e.

• Let’s introduce:

• In this case, we have

• We are in an embarrassingly parallel regime: can we choose the batch
size k to minimise the complexity or the number of steps ?

• Let’s study briefly this simplified setting to get some intuitions.

An embarrassingly parallel setting 13

<latexit sha1_base64="OVZqWgKuNrl6c3dTkNi+Cm/FX5s=">AAACJXicbZDPSsNAEMY3/v9v1aOXxSJUlJKIqBdBFMSjgtVCU8Nku2mXbjZhdyLW0IfwKXwEr/oA3kTw5MEXcVt70OoHCx/fzDCzvzCVwqDrvjsjo2PjE5NT0zOzc/MLi4Wl5UuTZJrxCktkoqshGC6F4hUUKHk11RziUPKrsH3cq1/dcG1Eoi6wk/J6DE0lIsEAbRQUNv1IA6Oe8k0WB7k48LrXivoKQgn0pORjiyNs+bciEBtBoeiW3b7oX+MNTJEMdBYUPv1GwrKYK2QSjKl5bor1HDQKJnl3xs8MT4G1oclr1iqIuann/U916bpNGjRKtH0KaT/9OZFDbEwnDm1nDNgyw7Ve+F+tlmG0X8+FSjPkin0vijJJMaE9QrQhNGcoO9YA08LeSlkLLCW0HH9tQdG+61oq3jCDv+Zyu+ztlr3zneLh0YDPFFkla6REPLJHDskpOSMVwsg9eSRP5Nl5cF6cV+ftu3XEGcyskF9yPr4AOsClKg==</latexit>

1

n

nX

i=1

rF (✓, ⇠i)

<latexit sha1_base64="9VoRThboSqgzO3l9D7gpLBV0tKo=">AAACFnicbVDLSgMxFM3UV62vUZe6CBahgpQZEXUjFF3oskJf0A4lk2baMJlkSDJCLd34FX6CW/0Ad+LWrWt/xLSdRR8euHByzr3c3OPHjCrtOD9WZml5ZXUtu57b2Nza3rF392pKJBKTKhZMyIaPFGGUk6qmmpFGLAmKfEbqfng78uuPRCoqeEX3Y+JFqMtpQDHSRmrbh3eFFokVZYKfhifXYWX62bbzTtEZAy4SNyV5kKLctn9bHYGTiHCNGVKq6Tqx9gZIaooZGeZaiSIxwiHqkqahHEVEeYPxFUN4bJQODIQ0xTUcq9MTAxQp1Y980xkh3VPz3kj8z2smOrjyBpTHiSYcTxYFCYNawFEksEMlwZr1DUFYUvNXiHtIIqxNcDNbNA2fhiYVdz6DRVI7K7oXRffhPF+6SfPJggNwBArABZegBO5BGVQBBs/gFbyBd+vF+rA+ra9Ja8ZKZ/bBDKzvP6T2nx0=</latexit>

G(✏, k) = kT (✏, k)

<latexit sha1_base64="F8lS9IhIhRQSaZbn8Wdy+UUmDYI=">AAACT3icbZBLbxMxFIU9odAHrwBLNhYRUitBNBOhlg1SRSXEskgkrRQnozvOncSK7Znad6qGUX4Zv6JLlogd/AB2CCfMog+uZOnoO8e69slKrTzF8beodWfj7r3Nre2d+w8ePnrcfvJ04IvKSezLQhfuNAOPWlnskyKNp6VDMJnGk2x+tPJPztF5VdjPtChxZGBqVa4kUEBpuy9yB5InVvjKpLV6lyzHVgzQERcWMg38w66gGRK8EhcqVXuvG5w3eG8dHveExjMuvJoaGPfSdifuxuvht0XSiA5r5jht/xCTQlYGLUkN3g+TuKRRDY6U1LjcEZXHEuQcpjgM0oJBP6rX31/yl4FMeF64cCzxNb16owbj/cJkIWmAZv6mt4L/84YV5W9HtbJlRWjlv0V5pTkVfNUlnyiHkvQiCJBOhbdyOYPQJ4XGr20hNf+yDK0kNzu4LQa9brLfTT696Ry+b/rZYs/ZC7bLEnbADtlHdsz6TLKv7Dv7yX5Fl9Hv6E+ribaiRjxj16a1/RfcM7Pl</latexit>

1

n

nX

i=1

krF (✓, ⇠i)�rf(✓)k2  �2

<latexit sha1_base64="we5wY+BVOq1Cv23ulLJ80AhqTyM=">AAACOHicbVDLSuRAFK04vl/Tjks3hY2gIE0iMrpxkBHEpYKtQqcNN9WV7jKVSqi6EXtC/ma+wk9wqxt3ggtx6xdY3Wbh60DB4ZxzubdOmElh0HXvnZEfo2PjE5NT0zOzc/M/awu/Tkyaa8abLJWpPgvBcCkUb6JAyc8yzSEJJT8N472Bf3rJtRGpOsZ+xtsJdJWIBAO0UlD70w3iVR97HGFtx480sMIri7j0TZ4ExcWOV57H1FcQSqD7VXDdvxJBIYKLci2o1d2GOwT9SryK1EmFw6D26HdSlidcIZNgTMtzM2wXoFEwyctpPzc8AxZDl7csVZBw0y6G/yzpilU6NEq1fQrpUH0/UUBiTD8JbTIB7JnP3kD8zmvlGG23C6GyHLlib4uiXFJM6aA02hGaM5R9S4BpYW+lrAe2LLTVftiCIv5X2la8zx18JScbDe93wzvarO/+rfqZJEtkmawSj2yRXXJADkmTMPKf3JBbcudcOw/Ok/P8Fh1xqplF8gHOyyu9uq2l</latexit>

gk(✓) =
1

k

kX

j=1

rF (✓, ⇠ij)
<latexit sha1_base64="3quOAk65T6UBz/eHuWEFJHC1XmA=">AAACM3icbVDLSgMxFM34rPVVdekmWgSFMsyI+NiJblwqWBWaMmTStIYmmSG5I9RhvsWv8BPc6lrcqVv/wUztwteBwOGcc7k3J06lsBAEz97Y+MTk1HRlpjo7N7+wWFtavrBJZhhvskQm5iqmlkuheRMESH6VGk5VLPll3D8u/csbbqxI9DkMUt5WtKdFVzAKTopqByIKG77vN0TUx8QKhYmicG1U3nSxgqyRWPQ2SR42iOwkYBuaFKW0VY1q9cAPhsB/STgidTTCaVR7I52EZYprYJJa2wqDFNo5NSCY5EWVZJanlPVpj7cc1VRx286HXyzwhlM6uJsY9zTgofp9IqfK2oGKXbK83/72SvE/r5VBd7+dC51mwDX7WtTNJIYEl33hjjCcgRw4QpkR7lbMrqmhDFyrP7aA6N8WrpXwdwd/ycW2H+764dlO/fBo1E8FraJ1tIlCtIcO0Qk6RU3E0B16QI/oybv3XrxX7/0rOuaNZlbQD3gfn+FJqf8=</latexit>

i1, ..., ik ⇠ Unif
�
{1, . . . , n}

�
with

<latexit sha1_base64="vIp7OyOouQ7UiteYvG4vZ6xFykM=">AAACI3icbVDJSgNBEO1xN25Rj14ag6CXMCOiXgRRBI8RzAKZIdR0epImPT1Dd40Qh3yDX+EneNUP8CZePHjyR+wsgtuDgsd7VVTVC1MpDLrumzM1PTM7N7+wWFhaXlldK65v1EySacarLJGJboRguBSKV1Gg5I1Uc4hDyeth73zo12+4NiJR19hPeRBDR4lIMEArtYp7fgzYDcP8YtDstHq7PnY5wl5AT3wFoQQafUmtYsktuyPQv8SbkBKZoNIqfvjthGUxV8gkGNP03BSDHDQKJvmg4GeGp8B60OFNSxXE3AT56KUB3bFKm0aJtqWQjtTvEznExvTj0HYOHzC/vaH4n9fMMDoOcqHSDLli40VRJikmdJgPbQvNGcq+JcC0sLdS1gUNDG2KP7ag6N0ObCre7wz+ktp+2Tsse1cHpdOzST4LZItsk13ikSNySi5JhVQJI3fkgTySJ+feeXZenNdx65QzmdkkP+C8fwIOFKST</latexit>

E[gk(✓)] = rf(✓)

<latexit sha1_base64="ZH8aLeN8e5eceLjA0v6Db8kIEWc=">AAACK3icbZBNTuNAEIXbwMwA80OAJZsW0UhhE9loxMwSwYYlSCQgxZmo3CknLXfbnu7ySMHyOTgFR2ALB2AFYoe4B+2QBX9PaunpVZWq64tyJS35/q03N7/w6fOXxaXlr9++/1hprK51bVYYgR2RqcycRmBRyRQ7JEnhaW4QdKTwJEr26/rJfzRWZukxTXLsaxilMpYCyEWDRhBqoLHRZRdM1RoNklZIYyTY2uKhwn88jA2IMrRypOHvdlUm1aDR9Nv+VPy9CWamyWY6HDQewmEmCo0pCQXW9gI/p34JhqRQWC2HhcUcRAIj7DmbgkbbL6enVfynS4Y8zox7KfFp+nKiBG3tREeusz7Evq3V4Ue1XkHxn34p07wgTMXzorhQnDJec+JDaVCQmjgDwkj3Vy7G4GCQo/lqC8nkrKYSvGXw3nS328FOOzj61dzdm/FZZBtsk7VYwH6zXXbADlmHCXbOLtkVu/YuvBvvzrt/bp3zZjPr7JW8xye6b6ip</latexit>

Var(gk(✓)) 
�2

k
and

also:

<latexit sha1_base64="YlWtWoyCo1oGi3UJW3id5xDfGj4=">AAACBXicbVDLSsNAFJ3UV62vqks3wSJUkJKIqMuiC11WsA9oQ5lMJ+2QyUycuRFq6NpPcKsf4E7c+h2u/RGnbRa29cCFwzn3ci7HjznT4DjfVm5peWV1Lb9e2Njc2t4p7u41tEwUoXUiuVQtH2vKmaB1YMBpK1YURz6nTT+8HvvNR6o0k+IehjH1ItwXLGAEg5G8m3KHxppxKU7C426x5FScCexF4makhDLUusWfTk+SJKICCMdat10nBi/FChjhdFToJJrGmIS4T9uGChxR7aWTp0f2kVF6diCVGQH2RP17keJI62Hkm80Iw0DPe2PxP6+dQHDppUzECVBBpkFBwm2Q9rgBu8cUJcCHhmCimPnVJgOsMAHT00wKsPBpZFpx5ztYJI3Tintece/OStWrrJ88OkCHqIxcdIGq6BbVUB0R9IBe0Ct6s56td+vD+pyu5qzsZh/NwPr6BU9GmRw=</latexit>

G(✏, k)
<latexit sha1_base64="8+qDbZO752/HpqY3fIqJiaJSpwE=">AAACBXicbVDLSsNAFJ3UV62vqks3g0WoICURUZdFNy4r9AVtKJPppB0ymcSZG6GGrv0Et/oB7sSt3+HaH3HaZmFbD1w4nHMv53K8WHANtv1t5VZW19Y38puFre2d3b3i/kFTR4mirEEjEam2RzQTXLIGcBCsHStGQk+wlhfcTvzWI1OaR7IOo5i5IRlI7nNKwEhuvdxlseYikmfBaa9Ysiv2FHiZOBkpoQy1XvGn249oEjIJVBCtO44dg5sSBZwKNi50E81iQgMyYB1DJQmZdtPp02N8YpQ+9iNlRgKeqn8vUhJqPQo9sxkSGOpFbyL+53US8K/dlMs4ASbpLMhPBIYITxrAfa4YBTEyhFDFza+YDokiFExPcynAg6exacVZ7GCZNM8rzmXFub8oVW+yfvLoCB2jMnLQFaqiO1RDDUTRA3pBr+jNerberQ/rc7aas7KbQzQH6+sXZHOZKQ==</latexit>

T (✏, k)

• For instance, assuming that is convex and L-smooth then, with the
right step size using gradient descent:

• This leads to:

• Two cases can be distinguished:

• Noise dominates (right): then we can reduce the number of steps (time)
while maintaining the total complexity, better pick .

• Optimization term dominates (left): increasing k only increases the
complexity, better pick .

• Does it bring any insights on Deep Learning training and the required batch-
size k?

Example: convex setting 14

<latexit sha1_base64="mmFq3o/KTzetvB7Z4Nw1xNhvsXk=">AAACdXicbZFdSxwxFIYzY1t1+zXqpQihtkVpXWe8UG+EpaXQi17YpavCZlzOZDO7YZOZMTkjrOP8gP690pteSn9Eb5v9KPjRA4GH9z05J7xJCiUthuEvz1949PjJ4tJy4+mz5y9eBiurJzYvDRcdnqvcnCVghZKZ6KBEJc4KI0AnSpwmo48T//RSGCvz7BuOCxFrGGQylRzQSb2gYhpwmCTVp7qbbjEcCoQebu/843NmEcx23GBKUJYa4NUX2j7fqyus6bu5wqwcaKDt2tGFQWfV7xvsooQ+bR+x6/nUcOf2SHbd7AWbYTOcFn0I0Rw2W62fBfuufxz3gt+sn/NSiwy5Amu7UVhgXIFByZWoG6y0ogA+goHoOsxACxtX05Bq+sYpfZrmxp0M6VS9faMCbe1YJ65zEom9703E/3ndEtPDuJJZUaLI+GxRWiqKOZ0kTvvSCI5q7AC4ke6tlA/B5YbuX+5sQTm6ql0q0f0MHsLJXjPab0ZfXTwfyKyWyDp5RbZIRA5Ii3wmx6RDOLnxFr3AW/H++Bv+a//trNX35nfWyJ3yd/8CcKrDJw==</latexit>

E[f(✓t)� f(✓?)]  LR2

t
+

�Rp
t
, R = k✓0 � ✓?k.

<latexit sha1_base64="OMEIcYlK/yT2OKg/NRZbUuOCOtA=">AAACa3icbVHLShxBFK1ujRrzGnUXsygigiEydM8iZhMwuskiCyMzKkyNQ3XN7Zmiq6vbqtvCpOivyj6/IS5cuc4nBKx5BHzkQMHhnHO5l1NJqaTFKLoOwoXFZ0vLK89XX7x89fpNY239xBaVEdARhSrMWcItKKmhgxIVnJUGeJ4oOE2yw4l/egnGykK3cVxCL+dDLVMpOHqp37ho7zAorVSF3s0+0C+UtUeAnClIkTnKUsOF+06Pz12rrh275GaerunHucusHOb83NFW/S+Xsd170alGmZHDEbK639iKmtEU9CmJ52Rr/2v062bttz7qN27ZoBBVDhqF4tZ246jEnuMGpVBQr7LKQslFxofQ9VTzHGzPTaup6bZXBjQtjH8a6VS9P+F4bu04T3wy5ziyj72J+D+vW2H6ueekLisELWaL0kpRLOikZzqQBgSqsSdcGOlvpWLEfV/of+PBFpTZz0kr8eMOnpKTVjP+1Ix/+HoOyAwrZJO8JzskJntkn3wjR6RDBLkif4OlYDn4E26Eb8N3s2gYzGc2yAOE23f9LsBL</latexit>

T (✏, k) = ⇥

⇢
LR2

"
+

�2R2

k "2

�
<latexit sha1_base64="9VoRThboSqgzO3l9D7gpLBV0tKo=">AAACFnicbVDLSgMxFM3UV62vUZe6CBahgpQZEXUjFF3oskJf0A4lk2baMJlkSDJCLd34FX6CW/0Ad+LWrWt/xLSdRR8euHByzr3c3OPHjCrtOD9WZml5ZXUtu57b2Nza3rF392pKJBKTKhZMyIaPFGGUk6qmmpFGLAmKfEbqfng78uuPRCoqeEX3Y+JFqMtpQDHSRmrbh3eFFokVZYKfhifXYWX62bbzTtEZAy4SNyV5kKLctn9bHYGTiHCNGVKq6Tqx9gZIaooZGeZaiSIxwiHqkqahHEVEeYPxFUN4bJQODIQ0xTUcq9MTAxQp1Y980xkh3VPz3kj8z2smOrjyBpTHiSYcTxYFCYNawFEksEMlwZr1DUFYUvNXiHtIIqxNcDNbNA2fhiYVdz6DRVI7K7oXRffhPF+6SfPJggNwBArABZegBO5BGVQBBs/gFbyBd+vF+rA+ra9Ja8ZKZ/bBDKzvP6T2nx0=</latexit>

G(✏, k) = kT (✏, k)

<latexit sha1_base64="IUg0xx+IJsxlUdZkS0NIKl3bbjI=">AAACAHicbVDLSsNAFJ3UV62vqks3g0WoICERUZdFQVxWsA9oQ5lMJ+3QySTM3Ig1dOMnuNUPcCdu/RPX/ojTNgvbeuDC4Zx7ufcePxZcg+N8W7ml5ZXVtfx6YWNza3unuLtX11GiKKvRSESq6RPNBJesBhwEa8aKkdAXrOEPrsd+44EpzSN5D8OYeSHpSR5wSsBIzZuyfdJ+5MedYsmxnQnwInEzUkIZqp3iT7sb0SRkEqggWrdcJwYvJQo4FWxUaCeaxYQOSI+1DJUkZNpLJ/eO8JFRujiIlCkJeKL+nUhJqPUw9E1nSKCv572x+J/XSiC49FIu4wSYpNNFQSIwRHj8PO5yxSiIoSGEKm5uxbRPFKFgIprZAnzwNDKpuPMZLJL6qe2e2+7dWalyleWTRwfoEJWRiy5QBd2iKqohigR6Qa/ozXq23q0P63PamrOymX00A+vrF83hlpM=</latexit>

F (., ⇠)

with

<latexit sha1_base64="A7695Fcwg1PjpxIeSJ8xUkEoOoI=">AAACAHicbVDLTgJBEOz1ifhCPXqZSEw8kV1i1CPRi0dM5JHASmaHASbM7G5mek1ww8VP8Kof4M149U88+yMOsAcBK+mkUtWd7q4glsKg6347K6tr6xubua389s7u3n7h4LBuokQzXmORjHQzoIZLEfIaCpS8GWtOVSB5IxjeTPzGI9dGROE9jmLuK9oPRU8wilZqto3oK/pQ7hSKbsmdgiwTLyNFyFDtFH7a3YgliofIJDWm5bkx+inVKJjk43w7MTymbEj7vGVpSBU3fjq9d0xOrdIlvUjbCpFM1b8TKVXGjFRgOxXFgVn0JuJ/XivB3pWfijBOkIdstqiXSIIRmTxPukJzhnJkCWVa2FsJG1BNGdqI5ragGD6NbSreYgbLpF4ueRcl7+68WLnO8snBMZzAGXhwCRW4hSrUgIGEF3iFN+fZeXc+nM9Z64qTzRzBHJyvXxnjl2I=</latexit>

�2

<latexit sha1_base64="qPLNxM30w6Kv0AOvQdBopVDYElA=">AAAB+3icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6kUoevFY0X5AG8pmu2mXbjZhdyLUkJ/gVX+AN/Hqj/HsH3Hb5mBbHww83pthZp4fC67Rcb6twsrq2vpGcbO0tb2zu1feP2jqKFGUNWgkItX2iWaCS9ZAjoK1Y8VI6AvW8ke3E7/1xJTmkXzEccy8kAwkDzglaKSH0bXslStO1ZnCXiZuTiqQo94r/3T7EU1CJpEKonXHdWL0UqKQU8GyUjfRLCZ0RAasY6gkIdNeOj01s0+M0reDSJmSaE/VvxMpCbUeh77pDAkO9aI3Ef/zOgkGV17KZZwgk3S2KEiEjZE9+dvuc8UoirEhhCpubrXpkChC0aQztwX56DkzqbiLGSyT5lnVvai69+eV2k2eTxGO4BhOwYVLqMEd1KEBFAbwAq/wZmXWu/Vhfc5aC1Y+cwhzsL5+AVQQlUk=</latexit>

k = n

<latexit sha1_base64="L8XsHEr82/nytnr8Gt+uBMg4T4A=">AAAB+3icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6kUoevFY0X5AG8pmu2mXbjZhdyLUkJ/gVX+AN/Hqj/HsH3Hb5mBbHww83pthZp4fC67Rcb6twsrq2vpGcbO0tb2zu1feP2jqKFGUNWgkItX2iWaCS9ZAjoK1Y8VI6AvW8ke3E7/1xJTmkXzEccy8kAwkDzglaKSH0bXbK1ecqjOFvUzcnFQgR71X/un2I5qETCIVROuO68TopUQhp4JlpW6iWUzoiAxYx1BJQqa9dHpqZp8YpW8HkTIl0Z6qfydSEmo9Dn3TGRIc6kVvIv7ndRIMrryUyzhBJulsUZAIGyN78rfd54pRFGNDCFXc3GrTIVGEoklnbgvy0XNmUnEXM1gmzbOqe1F1788rtZs8nyIcwTGcgguXUIM7qEMDKAzgBV7hzcqsd+vD+py1Fqx85hDmYH39AvOAlQw=</latexit>

k = 1

Deep networks and theory: limitations
• For deep networks, many standard assumptions fail: regularity is unclear,

and the gradient noise can be effectively unbounded for common
nonlinearities.

• Even under very strong assumptions, we typically do not get usable
guarantees for optimal hyperparameters (e.g. step size , batch size) or the
optimal value.

• Convexity allows sharp characterisations, but neural networks are highly
non-convex: what works in convex settings need not work in non-convex
ones, and vice versa.

• In practice, both batch size and learning rate must be tuned (e.g. by cross-
validation)

• However, even when bounds are essentially vacuous, theory still plays a role
as a sanity check and conceptual guide.

15

<latexit sha1_base64="RvFdSCceYHPcx8tQlS1R9rjGdt4=">AAAB/HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthXaUDbbbbt0swm7E6GG+hO86g/wJl79L579I27aHGzrg4HHezPMzAtiKQy67rdTWFldW98obpa2tnd298r7B00TJZrxBotkpB8CargUijdQoOQPseY0DCRvBaObzG89cm1EpO5xHHM/pAMl+oJRzKQOR9otV9yqOwVZJl5OKpCj3i3/dHoRS0KukElqTNtzY/RTqlEwySelTmJ4TNmIDnjbUkVDbvx0euuEnFilR/qRtqWQTNW/EykNjRmHge0MKQ7NopeJ/3ntBPtXfipUnCBXbLaon0iCEckeJz2hOUM5toQyLeythA2ppgxtPHNbUIyeJjYVbzGDZdI8q3oXVe/uvFK7zvMpwhEcwyl4cAk1uIU6NIDBEF7gFd6cZ+fd+XA+Z60FJ585hDk4X79E15XT</latexit>⌘

Proofs as a sanity check
• The typical assumption one will encounter in the literature are L

smoothness (L-lipschitz gradients) and bounded variance.

• To prove convergence, one typically (implicitly or explicitly) relies on
a Lyapunov function, which has to satisfy for a
gradient path :

• Typically, one shows that additional conditions hold for those
functions, e.g.:

16

<latexit sha1_base64="yw5aX/gtffcqsSFkQX7gh/cOpKM=">AAACGHicbVDLSsNAFJ3UV62vqEtBgkUQhJKIqLgqunFZxT6giWEymbRDJ5MwMxFqyM6v8BPc6ge4E7fuXPsjTtqAtvXAwJlz7uXee7yYEiFN80srzc0vLC6Vlysrq2vrG/rmVktECUe4iSIa8Y4HBaaE4aYkkuJOzDEMPYrb3uAy99v3mAsSsVs5jLETwh4jAUFQKsnVd1vndghl3/PSm+zOt2Vk/P7dQ1evmjVzBGOWWAWpggINV/+2/QglIWYSUShE1zJj6aSQS4Iozip2InAM0QD2cFdRBkMsnHR0R2bsK8U3goirx6QxUv92pDAUYhh6qjLfUUx7ufif101kcOakhMWJxAyNBwUJNdS1eSiGTzhGkg4VgYgTtauB+pBDJFV0E1MkGTxkKhVrOoNZ0jqqWSc16/q4Wr8o8imDHbAHDoAFTkEdXIEGaAIEHsEzeAGv2pP2pr1rH+PSklb0bIMJaJ8/qgOg1Q==</latexit>

V : Rd ! R+

<latexit sha1_base64="eevTr59W3yTdJ1S2aoU5qsfhrd0=">AAACQnicbVBNSyNBFOzxe11Xox730hgEF5YwI7K7F0H04lHBRCETwpueN0mTnp6x+42QHeYv+Sv8CV486MWbN/G6h+3ECH4VNBRV9XivK8qVtOT7N97U9Mzs3PzCl8WvS9+WV2qray2bFUZgU2QqM2cRWFRSY5MkKTzLDUIaKTyNBgcj//QCjZWZPqFhjp0UelomUgA5qVs7jMPEgChbWyH1kaBLP6oypmo3VKB7CnmoIVLAX/k/X1hoxpFQ4Tn3u7W63/DH4B9JMCF1NsFRt3YfxpkoUtQkFFjbDvycOiUYkkJhtRgWFnMQA+hh21ENKdpOOf5xxTedEvMkM+5p4mP19UQJqbXDNHLJFKhv33sj8TOvXVDyp1NKnReEWjwvSgrFKeOj+ngsDQpSQ0dAGOlu5aIPrkFyJb/ZQnLwt3KtBO87+Eha243gVyM43qnv7U/6WWDf2QbbYgH7zfbYITtiTSbYJbtmt+zOu/IevEfv6Tk65U1m1tkbeP/+A2Jfsew=</latexit>

d
V (✓t)

dt
= hrV (✓t), ✓ti  0

-PL conditions
<latexit sha1_base64="nzOt5Pz2+S+Lry9VywwMYDDH71o=">AAAB+3icbVBNT8JAEJ3iF+IX6tFLIzHxRFpj1CPRi0eMgiTQkO2yhQ2722Z3aoKkP8Gr/gBvxqs/xrN/xAV6EPAlk7y8N5OZeWEiuEHP+3YKK6tr6xvFzdLW9s7uXnn/oGniVFPWoLGIdSskhgmuWAM5CtZKNCMyFOwxHN5M/Mcnpg2P1QOOEhZI0lc84pSgle47Mu2WK17Vm8JdJn5OKpCj3i3/dHoxTSVTSAUxpu17CQZjopFTwbJSJzUsIXRI+qxtqSKSmWA8PTVzT6zSc6NY21LoTtW/E2MijRnJ0HZKggOz6E3E/7x2itFVMOYqSZEpOlsUpcLF2J387fa4ZhTFyBJCNbe3unRANKFo05nbgnz4nNlU/MUMlknzrOpfVP2780rtOs+nCEdwDKfgwyXU4Bbq0AAKfXiBV3hzMufd+XA+Z60FJ585hDk4X7+TapVx</latexit>µ

<latexit sha1_base64="ypXcPx58MVUhXisvy8a6G5piaGY=">AAACLnicbVDLSitBEO3xdX0bdemmMQhRMMyIeO9SdONSwYxCJoaaTiVp0tMzdtdciCE/4lf4CW71AwQX4sKNn2EnBvF1oOBwThVVdeJMSUu+/+iNjU9MTv2Znpmdm19YXCosr4Q2zY3AikhVas5jsKikxgpJUnieGYQkVngWdw4H/tl/NFam+pS6GdYSaGnZlALISfXCbhSiIR5piBXwsBRRGwk2h+rFTtTCSx4leenD2A4vtjbrhaJf9ofgP0kwIkU2wnG98BI1UpEnqEkosLYa+BnVemBICoX92Si3mIHoQAurjmpI0NZ6w+/6fMMpDd5MjStNfKh+nuhBYm03iV1nAtS2372B+JtXzan5r9aTOssJtXhf1MwVp5QPouINaVCQ6joCwkh3KxdtMCDIBfplC8nOVd+lEnzP4CcJd8rBXjk42S3uH4zymWZrbJ2VWMD+sn12xI5ZhQl2zW7ZHbv3brwH78l7fm8d80Yzq+wLvNc3+4Kn9w==</latexit>

krV (✓)k2 � µ(V (✓)� V ⇤)
<latexit sha1_base64="e1MJzTpmxNIixHiImNix1O/S+so=">AAACKnicbZBLSgNBEIZ7fL+NunTTGARdGGZE1KXoxmUEE4VMCDU9NaZJz8PuGiEOcw1P4RHc6gHcBZd6EDsxC18FDT//X0VVf0GmpCHXHTgTk1PTM7Nz8wuLS8srq5W19aZJcy2wIVKV6usADCqZYIMkKbzONEIcKLwKemfD/OoOtZFpckn9DNsx3CQykgLIWp2KG/qRBlHw5o5PXSTo0G5ZhFT6Cm/5ng8q68L3sFOpujV3VPyv8MaiysZV71Te/TAVeYwJCQXGtDw3o3YBmqRQWC74ucEMRA9usGVlAjGadjH6Wcm3rRPyKNX2JcRH7veJAmJj+nFgO2OgrvmdDc3/slZO0XG7kEmWEybia1GUK04pH2LiodQoSPWtAKGlvZWLLlhSZGH+2EKyd19aKt5vBn9Fc7/mHda8i4PqyemYzxzbZFtsh3nsiJ2wc1ZnDSbYA3tiz+zFeXRenYHz9tU64YxnNtiPcj4+AQI7p68=</latexit>

d
V (✓t)

dt
 �↵V (✓t) strong convexity

The difficulty is to find both the dynamic and Lyapunov function V.
<latexit sha1_base64="+dGEs6ok7zc3/g5nvP9gLyXczfo=">AAACAHicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJkdnaZ6RXikouf4FU/wJt49U88+yNOkj2YxIKGoqqb7q4gkcKg6347K6tr6xubha3i9s7u3n7p4LBh4lQzXmexjHUroIZLoXgdBUreSjSnUSB5MxjeTvzmI9dGxOoBRwn3I9pXIhSMopVaHRxwpF3slspuxZ2CLBMvJ2XIUeuWfjq9mKURV8gkNabtuQn6GdUomOTjYic1PKFsSPu8bamiETd+Nr13TE6t0iNhrG0pJFP170RGI2NGUWA7I4oDs+hNxP+8dorhtZ8JlaTIFZstClNJMCaT50lPaM5QjiyhTAt7K2EDqilDG9HcFhTDp7FNxVvMYJk0ziveZcW7vyhXb/J8CnAMJ3AGHlxBFe6gBnVgIOEFXuHNeXbenQ/nc9a64uQzRzAH5+sXi9qXqg==</latexit>

✓t

<latexit sha1_base64="+07Cba6fd8fb/PdDIZyrkwSKMe4=">AAACDnicbVDLSgNBEJyNrxhf8XHzMhiEeAm7Iuox6MVjBPOA7LLMTjrJkNmHM71CsuQf/ASv+gHexKu/4NkfcZPswSQWNBRV3VRTXiSFRtP8NnIrq2vrG/nNwtb2zu5ecf+gocNYcajzUIaq5TENUgRQR4ESWpEC5nsSmt7gduI3n0BpEQYPOIzA8VkvEF3BGaaSWzwq29gHZC6euQnaPXik5tgtlsyKOQVdJlZGSiRDzS3+2J2Qxz4EyCXTum2ZEToJUyi4hHHBjjVEjA9YD9opDZgP2kmm34/paap0aDdU6QRIp+rfi4T5Wg99L930Gfb1ojcR//PaMXavnUQEUYwQ8FlQN5YUQzqpgnaEAo5ymBLGlUh/pbzPFOOYFjaXgmIwmrRiLXawTBrnFeuyYt1flKo3WT95ckxOSJlY5IpUyR2pkTrhZEReyCt5M56Nd+PD+Jyt5ozs5pDMwfj6BVm3nFg=</latexit>

(✓t)t�0

The training loop
17

• The usual training loop of a Transformer is rather simple, assuming
data are spliced across n workers via :

until completion, on worker i:

// forward pass
<latexit sha1_base64="a+U0FpQmlbSda7IobLQHVqF0fkc=">AAACH3icbVDJSgNBEO2JW4xb1KOXwSBEkDAjol6EoBePEcwCmTj0dGqSJj0L3TWSOOQL/Ao/wat+gDfxmrM/Ymc5aOKDgsd7VVTV82LBFVrWyMgsLa+srmXXcxubW9s7+d29mooSyaDKIhHJhkcVCB5CFTkKaMQSaOAJqHu9m7FffwSpeBTe4yCGVkA7Ifc5o6glN3/kIPQRMRWRUsMH7uKVX3SwC0hdPHH6fCwdu/mCVbImMBeJPSMFMkPFzX877YglAYTIBFWqaVsxtlIqkTMBw5yTKIgp69EONDUNaQCqlU7eGZpHWmmbfiR1hWhO1N8TKQ2UGgSe7gwodtW8Nxb/85oJ+petlIdxghCy6SI/ESZG5jgbs80lMBQDTSiTXN9qsi6VlKFO8M8W5L2noU7Fns9gkdROS/Z5yb47K5SvZ/lkyQE5JEVikwtSJrekQqqEkWfySt7Iu/FifBifxte0NWPMZvbJHxijHy8qpFA=</latexit>

lossit = f(✓t, ⇠
i
t)

// backward pass
<latexit sha1_base64="698O0wEGR8uhcLOcYkm5z3AZ11w=">AAACGnicbVDLSgNBEJyNr/iOevQyGAQFCbsi6kUIevEYwUQhG5feyWwyZHZ2mekVY8jVr/ATvOoHeBOvXjz7I04eB40WNBRV3XR3hakUBl3308lNTc/MzuXnFxaXlldWC2vrNZNkmvEqS2Sir0MwXArFqyhQ8utUc4hDya/CztnAv7rl2ohEXWI35Y0YWkpEggFaKSjQ1o0I8MRXEEqg0Y6PbY4Q4J5/JwbOblAouiV3CPqXeGNSJGNUgsKX30xYFnOFTIIxdc9NsdEDjYJJ3l/wM8NTYB1o8bqlCmJuGr3hJ326bZUmjRJtSyEdqj8nehAb041D2xkDts2kNxD/8+oZRseNnlBphlyx0aIokxQTOoiFNoXmDGXXEmBa2Fspa4MGhja8X1tQdO77NhVvMoO/pLZf8g5L3sVBsXw6zidPNskW2SEeOSJlck4qpEoYeSBP5Jm8OI/Oq/PmvI9ac854ZoP8gvPxDYrfoT0=</latexit>

git = rf(✓t, ⇠
i
t)

// average gradients

<latexit sha1_base64="Q/n6Z8h04FbiPWPcnDvi4wpaiFM=">AAACGnicbZC7SgNBFIZn4y3G26qlzWAQrMKuiNoEgjaWEcwFcllmJ7PJkNnZZeasEJdtfQofwVYfwE5sbax9ESeXwiQeGPj5/3M4Zz4/FlyD43xbuZXVtfWN/GZha3tnd8/eP6jrKFGU1WgkItX0iWaCS1YDDoI1Y8VI6AvW8Ic347zxwJTmkbyHUcw6IelLHnBKwFiejfselNuBIjR1s1RmbZ2EXsrLbtaVJupyzy46JWdSeFm4M1FEs6p69k+7F9EkZBKoIFq3XCeGTkoUcCpYVmgnmsWEDkmftYyUJGS6k05+kuET4/RwECnzJOCJ+3ciJaHWo9A3nSGBgV7MxuZ/WSuB4KqTchknwCSdLgoSgSHCYyy4xxWjIEZGEKq4uRXTATFYwMCb2wJ8+JgZKu4ig2VRPyu5FyX37rxYuZ7xyaMjdIxOkYsuUQXdoiqqIYqe0At6RW/Ws/VufVif09acNZs5RHNlff0CGJCiMA==</latexit>

gt =
1

n

nX

i=1

git

sample // sample from the chunk of the data
<latexit sha1_base64="54UQRnkJs/aI8iMVjEPcedNek+A=">AAACC3icbVDLSsNAFJ3UV62vVJduBovgqiQi6rLoxmUF+4AmDZPppB06eTBzo9bQT/AT3OoHuBO3foRrf8Rpm4VtPXDhcM69nMvxE8EVWNa3UVhZXVvfKG6WtrZ3dvfM8n5TxamkrEFjEcu2TxQTPGIN4CBYO5GMhL5gLX94PfFb90wqHkd3MEqYG5J+xANOCWjJM8vOI/egyx3FQ+y0eZd7ZsWqWlPgZWLnpIJy1D3zx+nFNA1ZBFQQpTq2lYCbEQmcCjYuOaliCaFD0mcdTSMSMuVm09fH+FgrPRzEUk8EeKr+vchIqNQo9PVmSGCgFr2J+J/XSSG4dDMeJSmwiM6CglRgiPGkB9zjklEQI00IlVz/iumASEJBtzWXAnz4NNat2IsdLJPmadU+r9q3Z5XaVd5PER2iI3SCbHSBaugG1VEDUfSAXtArejOejXfjw/icrRaM/OYAzcH4+gWaIJtw</latexit>

⇠it ⇠ ⌅i

<latexit sha1_base64="SDuOAfoXw2pAhIrhIo07pX0vGtA=">AAACM3icbVDLSgNBEJz1GeMr6tHLYhAUQ9gV8XEQgl68GcEkQhKW2UknGTL7YKZXTJb9Fr/CT/CqZ/GmXv0HJ8kejLGhmaKqmu4pNxRcoWW9GTOzc/MLi5ml7PLK6tp6bmOzqoJIMqiwQATyzqUKBPehghwF3IUSqOcKqLm9y6FeuwepeODfYj+Epkc7Pm9zRlFTTu6sgV1A6sR4YCcFNX7PGwgPiBhfh8g9PgCZ7KU+LHR0Kwf3nVzeKlqjMqeBnYI8Savs5D4brYBFHvjIBFWqblshNmMqkTMBSbYRKQgp69EO1DX0qQeqGY++mJi7mmmZ7UDq9tEcsb8nYuop1fdc7fQodtVfbUj+p9UjbJ82Y+6HEYLPxovakTAxMId5mS0ugaHoa0CZ5PpWk3WppAx1qhNbkPcGiU7F/pvBNKgeFu3jon1zlC9dpPlkyDbZIXvEJiekRK5ImVQII4/kmbyQV+PJeDc+jK+xdcZIZ7bIRBnfP9mgrE4=</latexit>

✓t+1, st+1 = Optimizer(✓t, gt, st) // update parameters

<latexit sha1_base64="dYohcscjHk5ayga4aKBaRd4GKew=">AAACDHicbVDLSsNAFL2pr1pfsS7dDBbBVUlE1I1QdOOygn1AG8JkOmmHTiZhZiLW0F/wE9zqB7gTt/6Da3/EaZuFbT1w4dxz7uVeTpBwprTjfFuFldW19Y3iZmlre2d3z94vN1WcSkIbJOaxbAdYUc4EbWimOW0nkuIo4LQVDG8mfuuBSsVica9HCfUi3BcsZARrI/l2udtm6Ap1SZr4DJnGZ75dcarOFGiZuDmpQI66b/90ezFJIyo04Vipjusk2suw1IxwOi51U0UTTIa4TzuGChxR5WXT38fo2Cg9FMbSlNBoqv7dyHCk1CgKzGSE9UAtehPxP6+T6vDSy5hIUk0FmR0KU450jCZBoB6TlGg+MgQTycyviAywxESbuOauaDZ8GptU3MUMlknztOqeV927s0rtOs+nCIdwBCfgwgXU4Bbq0AACj/ACr/BmPVvv1of1ORstWPnOAczB+voFAaibBQ==</latexit>

⌅ = [i⌅i

initialise layers

// average losses

<latexit sha1_base64="Py/H4I/SH/6oUaVqsmxl7Ix/Ehc=">AAACMHicbVDLSsNAFJ34rPVVdelmsAiuSiJS3RSKblxWsA9o2jCZTnToZBJmbsQa8id+hZ/gVj9AVyLu/AqnbRbWemDgcM653DvHjwXXYNvv1sLi0vLKamGtuL6xubVd2tlt6ShRlDVpJCLV8YlmgkvWBA6CdWLFSOgL1vaHF2O/fceU5pG8hlHMeiG5kTzglICRvFLVBXYPAKmItM48qLmBIhQ70tVJ6KW85mR9iWdCfe6BVyrbFXsCPE+cnJRRjoZX+nIHEU1CJoEKonXXsWPopUQBp4JlRTfRLCZ0SG5Y11BJQqZ76eR/GT40ygAHkTJPAp6ovydSEmo9Cn2TDAnc6r/eWPzP6yYQnPVSLuMEmKTTRUEiMER4XBYecMUoiJEhhCpubsX0lpiCwFQ6swX48CEzrTh/O5gnreOKU604Vyfl+nneTwHtowN0hBx0iuroEjVQE1H0iJ7RC3q1nqw368P6nEYXrHxmD83A+v4BEc2sEg==</latexit>

losst =
1

n

nX

i=1

lossit

Example: Convergence of the previous training loop

• Assume

• Let and write .

• Assume f is L-smooth and the gradient has variance , then
for any learning rate , we have:

18

<latexit sha1_base64="/e7gt/ZiezXSmfaxMnfjIZbn7RQ=">AAACcnicbZHRbtMwFIadbMAobJRxN24MFVILo0qqaSB1FxMIiQsuhtRuk+o2OnGd1qrjRPYJomR5UG644RV4AJwSIbZxJEu///MfHetznCtpMQi+e/7W9p2793butx483N171H68f26zwnAx5pnKzGUMViipxRglKnGZGwFprMRFvHpf9y++CGNlpke4zsU0hYWWieSAzoraX5nUSVQGTAmKJ6OKpYDLOC4/VOyKaYgV0KTLcCkQIuyxq9mgxYYuzIaUJQZ4OWCxXHT/ZoLe62T2svZ6VcmcQ0cVZcNXLv+pvjIrFynMBv2o3Qn6wabobRE2okOaOovaP9k840UqNHIF1k7CIMdpCQYlV6JqscKKHPgKFmLipIZU2Gm5IVTRF86Z0yQz7mikG/ffiRJSa9dp7JI1AHuzV5v/600KTN5OS6nzAoXmfxYlhaKY0Ro3nUsjOKq1E8CNdG+lfAkOHLpPubYF5epb5aiENxncFueDfnjcDz8fdU7fNXx2yFPynHRJSN6QU/KRnJEx4eSHt+3tenveL//Af+Y3MH2vmXlCrpV/+BtXw7u6</latexit>

inf
0t<T

Ekrf(✓t)k2 
2
�
f(✓0)� f⇤�

⌘T
+ L⌘�2.

<latexit sha1_base64="w2cD0ic7wIT1zjllNmx8F/Ph5gU=">AAACGXicbVDLSgNBEJz1GeNr1aMHB4PgKeyKqBchqKA3I5oHJCHMTjrJkNkHM71isuToV/gJXvUDvIlXT579EXeTCCaxoKGo6qa7ywmk0GhZX8bM7Nz8wmJqKb28srq2bm5sFrUfKg4F7ktflR2mQQoPCihQQjlQwFxHQsnpnCd+6R6UFr53h90Aai5reaIpOMNYqps7VYQHRIyuAxSu6IHqn/5Kt5cX/bqZsbLWAHSa2COSISPk6+Z3teHz0AUPuWRaV2wrwFrEFAouoZ+uhhoCxjusBZWYeswFXYsGj/TpXqw0aNNXcXlIB+rfiYi5WnddJ+50Gbb1pJeI/3mVEJsntUh4QYjg8eGiZigp+jRJhTaEAo6yGxPGlYhvpbzNFOMYZze2BUWnl6RiT2YwTYoHWfsoa98cZnJno3xSZJvskn1ik2OSI1ckTwqEk0fyTF7Iq/FkvBnvxsewdcYYzWyRMRifP0mgolw=</latexit>

Optimizer = SGD

<latexit sha1_base64="EtpV/tTSl/JRBIoKF94Xpeo3sCk=">AAACE3icbZDLSgMxFIYz9VbrbdSVuAkWobooMyLqRii6cVnBXqBTSybNtKGZzJCcEepQfAofwa0+gDtx6wO49kVMLwvb+kPg4z/ncE5+PxZcg+N8W5mFxaXllexqbm19Y3PL3t6p6ihRlFVoJCJV94lmgktWAQ6C1WPFSOgLVvN718N67YEpzSN5B/2YNUPSkTzglICxWvZecH986XEZtDzoMiA4KIzhqGXnnaIzEp4HdwJ5NFG5Zf947YgmIZNABdG64ToxNFOigFPBBjkv0SwmtEc6rGFQkpDpZjr6wgAfGqeNg0iZJwGP3L8TKQm17oe+6QwJdPVsbWj+V2skEFw0Uy7jBJik40VBIjBEeJgHbnPFKIi+AUIVN7di2iWKUDCpTW0B3nscmFTc2QzmoXpSdM+K7u1pvnQ1ySeL9tEBKiAXnaMSukFlVEEUPaEX9IrerGfr3fqwPsetGWsys4umZH39ArgBnh4=</latexit>

f⇤ = inf
✓
f(✓)

<latexit sha1_base64="xZTh/8lhCiBYLoAIKYpmxfYbjI8=">AAACEXicbZDLSsNAFIYn9VbrLerChZtgEapgSUTUjVB047KCvUAby2Q6sUMnkzBzItSQp/AR3OoDuBO3PoFrX8RpG8G2/jDw8Z9zOGd+L+JMgW1/Gbm5+YXFpfxyYWV1bX3D3NyqqzCWhNZIyEPZ9LCinAlaAwacNiNJceBx2vD6V8N644FKxUJxC4OIugG+F8xnBIO2OuZOvdSGHgV8cOH/0pF/d9gxi3bZHsmaBSeDIspU7Zjf7W5I4oAKIBwr1XLsCNwES2CE07TQjhWNMOnje9rSKHBAlZuMPpBa+9rpWn4o9RNgjdy/EwkOlBoEnu4MMPTUdG1o/ldrxeCfuwkTUQxUkPEiP+YWhNYwDavLJCXABxowkUzfapEelpiAzmxiC7D+Y6pTcaYzmIX6cdk5LTs3J8XKZZZPHu2iPVRCDjpDFXSNqqiGCErRM3pBr8aT8Wa8Gx/j1pyRzWyjCRmfP1gznMY=</latexit>

V (✓) = f(✓)� f⇤

Thus, it converges to a stationary point, but the limit point and rate are
unclear, and it fails to explain much of the observed training behavior.

In practice, we see such loss curves,
with drops due to the learning-rate

scheduler. Can we obtain basic
guarantees in a simplified setting?

<latexit sha1_base64="A7695Fcwg1PjpxIeSJ8xUkEoOoI=">AAACAHicbVDLTgJBEOz1ifhCPXqZSEw8kV1i1CPRi0dM5JHASmaHASbM7G5mek1ww8VP8Kof4M149U88+yMOsAcBK+mkUtWd7q4glsKg6347K6tr6xubua389s7u3n7h4LBuokQzXmORjHQzoIZLEfIaCpS8GWtOVSB5IxjeTPzGI9dGROE9jmLuK9oPRU8wilZqto3oK/pQ7hSKbsmdgiwTLyNFyFDtFH7a3YgliofIJDWm5bkx+inVKJjk43w7MTymbEj7vGVpSBU3fjq9d0xOrdIlvUjbCpFM1b8TKVXGjFRgOxXFgVn0JuJ/XivB3pWfijBOkIdstqiXSIIRmTxPukJzhnJkCWVa2FsJG1BNGdqI5ragGD6NbSreYgbLpF4ueRcl7+68WLnO8snBMZzAGXhwCRW4hSrUgIGEF3iFN+fZeXc+nM9Z64qTzRzBHJyvXxnjl2I=</latexit>

�2

<latexit sha1_base64="RvFdSCceYHPcx8tQlS1R9rjGdt4=">AAAB/HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthXaUDbbbbt0swm7E6GG+hO86g/wJl79L579I27aHGzrg4HHezPMzAtiKQy67rdTWFldW98obpa2tnd298r7B00TJZrxBotkpB8CargUijdQoOQPseY0DCRvBaObzG89cm1EpO5xHHM/pAMl+oJRzKQOR9otV9yqOwVZJl5OKpCj3i3/dHoRS0KukElqTNtzY/RTqlEwySelTmJ4TNmIDnjbUkVDbvx0euuEnFilR/qRtqWQTNW/EykNjRmHge0MKQ7NopeJ/3ntBPtXfipUnCBXbLaon0iCEckeJz2hOUM5toQyLeythA2ppgxtPHNbUIyeJjYVbzGDZdI8q3oXVe/uvFK7zvMpwhEcwyl4cAk1uIU6NIDBEF7gFd6cZ+fd+XA+Z60FJ585hDk4X79E15XT</latexit>⌘

Feeding
Largue Language Models

19

Tokens: the fuel of LLMs
• LLMs consume sequences of tokens: discrete units (subwords, bytes, or

image patches) produced by a tokenizer and fed directly to the model.

• Tokenization comes from NLP / text compression: it defines an
(almost) invertible encoding of the raw signal (text, bytes, sometimes
images).

• Each pretrained model is tied to a fixed tokenizer; changing it later
would require retraining (at least) the input/output embeddings.

20

"abc…" 10201… "abc…"

<latexit sha1_base64="xmcMGUvd1tb62XFFAMLbe4tiTsY=">AAACCXicbVDLSsNAFJ34rPXRqEs3wSK4KomIuiy6cVnBPqANZTK5aYdOHszciDX0C/wEt/oB7sStX+HaH3HSZmFbD1w4nHMv997jJYIrtO1vY2V1bX1js7RV3t7Z3auY+wctFaeSQZPFIpYdjyoQPIImchTQSSTQ0BPQ9kY3ud9+AKl4HN3jOAE3pIOIB5xR1FLfrPQQHhExg4jFPkz6ZtWu2VNYy8QpSJUUaPTNn54fszSECJmgSnUdO0E3oxI5EzAp91IFCWUjOoCuphENQbnZ9PCJdaIV3wpiqStCa6r+nchoqNQ49HRnSHGoFr1c/M/rphhcuRmPkhT1Y7NFQSosjK08BcvnEhiKsSaUSa5vtdiQSspQZzW3BfnoKU/FWcxgmbTOas5Fzbk7r9avi3xK5Igck1PikEtSJ7ekQZqEkZS8kFfyZjwb78aH8TlrXTGKmUMyB+PrFyxWm0s=</latexit>

encode
<latexit sha1_base64="hsBxycIY0TbaUNxnYCiowg02lbw=">AAACCXicbVDLSsNAFJ34rPXRqEs3wSK4KomIuiy6cVnBPqANZTK5aYdOMmHmRqyhX+AnuNUPcCdu/QrX/ohJm4VtPXDhcM69nMvxYsE12va3sbK6tr6xWdoqb+/s7lXM/YOWloli0GRSSNXxqAbBI2giRwGdWAENPQFtb3ST++0HUJrL6B7HMbghHUQ84IxiJvXNSg/hERFTH5j0YdI3q3bNnsJaJk5BqqRAo2/+9HzJkhAiZIJq3XXsGN2UKuRMwKTcSzTElI3oALoZjWgI2k2nj0+sk0zxrUCqbCK0purfi5SGWo9DL9sMKQ71opeL/3ndBIMrN+VRnCBEbBYUJMJCaeUtWD5XwFCMM0KZ4tmvFhtSRRlmXc2lIB895a04ix0sk9ZZzbmoOXfn1fp10U+JHJFjckoccknq5JY0SJMwkpAX8krejGfj3fgwPmerK0Zxc0jmYHz9AhxRm0E=</latexit>

decode

What matters in Tokenisation for LLMs?
• Fidelity: does ? (e.g., handle white space, code syntax,

emojis, URLs, …)

• Compression: how many tokens per byte (TPB) we get on typical data.
Higher TPB = more tokens for the same text → worse compression.

• Predictability: a sequence is predictable if the model (human, LLM) assigns high
probability to the correct next token, as reflected by low bits per token (bpt) from
the cross-entropy loss.

• Efficiency is thus measured as bits per byte . There is a trade off, as
- very fine tokenization: a character level tokenisation has a TPB high and btp is
low (easy predictions)
- very coarse tokenisation: TPB is low, but predicting each token is very hard

• Some tokens have special roles: end-of-sequence (EOS), beginning-of-sequence
(BOS), padding, and task markers such as <think>, <code>, etc.

21

<latexit sha1_base64="VSS8k6R4hMnO/pS6gb9iBSmkdJA=">AAACH3icbVDJSgNBEO2JW4xb1KOXwRBILmFGRL0IQS8eI5gFkiH09NQkTXoWumvEOOQL/Ao/wat+gDfxmrM/YmcRNPFBw6v3qqiu58aCK7SssZFZWV1b38hu5ra2d3b38vsHDRUlkkGdRSKSLZcqEDyEOnIU0Iol0MAV0HQH1xO/eQ9S8Si8w2EMTkB7Ifc5o6ilbr7YQXhAxNQDFnkwKv3UEM5qVS5fqm6+YFWsKcxlYs9JgcxR6+a/Ol7EkgBCZIIq1batGJ2USuRMwCjXSRTElA1oD9qahjQA5aTTc0ZmUSue6UdSvxDNqfp7IqWBUsPA1Z0Bxb5a9Cbif147Qf/CSXkYJ6jPmy3yE2FiZE6yMT0ugaEYakKZ5PqvJutTSRnqBP9sQT54HOlU7MUMlknjpGKfVezb00L1ap5PlhyRY1IiNjknVXJDaqROGHkiL+SVvBnPxrvxYXzOWjPGfOaQ/IEx/gYyo6RR</latexit>

decode(encode(s)) = s

TPB (French) > TPB (English)
PREDICTION AND ENTROPY OF

PRINTED ENGLISH, Shanon proves this with
N-grams instead of LLMs tokens dictionaries

Generally,

<latexit sha1_base64="0dovaG0xUW3jAf3jkiDiXdbBnb0=">AAACFnicbVC7TsMwFHXKq5RXgBEGiwqJqUoQAsaqLIxF6ktqospxndaq85B9gyhRF76CT2CFD2BDrKzM/AhOm4G2HMnS0Tn36lwfLxZcgWV9G4WV1bX1jeJmaWt7Z3fP3D9oqSiRlDVpJCLZ8YhigoesCRwE68SSkcATrO2NbjK/fc+k4lHYgHHM3IAMQu5zSkBLPfPYAfYAqRfDBDvAA6bwTGnUa5OeWbYq1hR4mdg5KaMc9Z754/QjmgQsBCqIUl3bisFNiQROBZuUnESxmNARGbCupiHReW46/cUEn2qlj/1I6hcCnqp/N1ISKDUOPD0ZEBiqRS8T//O6CfjXbsrDOAEW0lmQnwgMEc4qwX0uGQUx1oRQyfWtmA6JJBR0cXMpwEePWSv2YgfLpHVesS8r9t1FuVrL+ymiI3SCzpCNrlAV3aI6aiKKntALekVvxrPxbnwYn7PRgpHvHKI5GF+/4sugeg==</latexit>

bpt⇥ TPB

From Tokens to Embeddings
• Tokens are mapped to continuous vectors from via an

embedding layer, e.g., a look-up table of size .

• Tokenizer leads to Compute trade-offs:
- Fewer tokens for the same bytes → shorter sequences, so
more context fits in a fixed window.
- But achieving this often requires a larger vocabulary,
which increases embedding memory and latency.

• This raises the key question: How should we design our
tokenizer to balance these costs?

• One of the solution is Byte per Encoding: simple, fast to train,
with good compression and predictability.

22

<latexit sha1_base64="upoq30TS7VatT9cd0mTJZnrPeyM=">AAACBHicbVDLSsNAFJ34rPVVdelmsAiuSiKiLotuXFaxD2hjmUwm7dDJJMzcCDVk6ye41Q9wJ279D9f+iJM2C9t64MLhnHu5h+PFgmuw7W9raXlldW29tFHe3Nre2a3s7bd0lCjKmjQSkep4RDPBJWsCB8E6sWIk9ARre6Pr3G8/MqV5JO9hHDM3JAPJA04JGKnXCwkMPS+9yx78fqVq1+wJ8CJxClJFBRr9yk/Pj2gSMglUEK27jh2DmxIFnAqWlXuJZjGhIzJgXUMlCZl200nmDB8bxcdBpMxIwBP170VKQq3HoWc284x63svF/7xuAsGlm3IZJ8AknT4KEoEhwnkB2OeKURBjQwhV3GTFdEgUoWBqmvkCfPSUmVac+Q4WSeu05pzXnNuzav2q6KeEDtEROkEOukB1dIMaqIkoitELekVv1rP1bn1Yn9PVJau4OUAzsL5+Aam2mWM=</latexit>

Rd
<latexit sha1_base64="H5ogC3XhUhZ53awN3SlyD3SF8Ig=">AAACH3icbVDLTgIxFO34RHyNunTTSEhckRlj1CXRjUs08kgYJJ1SoKHTmbR3iDiZL/Ar/AS3+gHujFvW/ogdYCHgSZqcnHNvzu3xI8E1OM7YWlldW9/YzG3lt3d29/btg8OaDmNFWZWGIlQNn2gmuGRV4CBYI1KMBL5gdX9wk/n1IVOah/IBRhFrBaQneZdTAkZq20UvIND3/eQ+fUw6HvCAaSzbiQfsCZJhSImfpmnbLjglZwK8TNwZKaAZKm37x+uENA6YBCqI1k3XiaCVEAWcCpbmvViziNAB6bGmoZKY2FYy+U6Ki0bp4G6ozJOAJ+rfjYQEWo8C30xmx+tFLxP/85oxdK9aCZdRDEzSaVA3FhhCnHWDO1wxCmJkCKGKm1sx7RNFKJgG51KAD56zVtzFDpZJ7azkXpTcu/NC+XrWTw4doxN0ilx0icroFlVQFVH0gt7QO/qwXq1P68v6no6uWLOdIzQHa/wLVnmlDQ==</latexit>

Rd⇥nvocab

Training BPE
• BPE is a simple greedy way to move toward a more efficient code

(fewer bits per byte) by collapsing frequent patterns into single
symbols.

• It greedily minimizes the number of tokens needed to encode a
training corpus (under a fix budget). The algorithm is as follow:

23

• Initialise with the characters of the alphabet:
D {‘a’, ‘b’, ‘c’, …}

Remark 1: at every merge, the total number of tokens decrease by
(and it is the largest drop possible)

• Count all adjacent symbol pairs
• Find the most frequent pair with
• Aggregate

<latexit sha1_base64="/wkDWpw+6muM44bgWxIC8VHZKYE=">AAACFXicbVDLSsNAFJ3UV62vqMtuBou0QimJiLos6sJlBfuAJpTJdNIOnUzCzMRQQxd+hZ/gVj/Anbh17dofMWmzsK0HLhzOuZd773ECRqUyjG8tt7K6tr6R3yxsbe/s7un7By3phwKTJvaZLzoOkoRRTpqKKkY6gSDIcxhpO6Pr1G8/ECGpz+/VOCC2hwacuhQjlUg9vRjVonIVVqJqVD6xKIeWh9QQIxbfTHp6yagZU8BlYmakBDI0evqP1fdx6BGuMENSdk0jUHaMhKKYkUnBCiUJEB6hAekmlCOPSDuePjGBx4nSh64vkuIKTtW/EzHypBx7TtKZnigXvVT8z+uGyr20Y8qDUBGOZ4vckEHlwzQR2KeCYMXGCUFY0ORWiIdIIKyS3Oa2KDp6TFMxFzNYJq3TmnleM+/OSvWrLJ88KIIjUAEmuAB1cAsaoAkweAIv4BW8ac/au/ahfc5ac1o2cwjmoH39Ag0bnjo=</latexit>

w.w0, (w,w0) 2 D
<latexit sha1_base64="EVLaZuTSxdJDq+jwVt3b5N7ZyCw=">AAACBXicbVDLSsNAFL2pr1pfVZduBovoKiQi6kYounFZwT6gDWUynbRDJ5M4M7HU0LWf4FY/wJ249Ttc+yNO2yxs64ELh3Pu5VyOH3OmtON8W7ml5ZXVtfx6YWNza3unuLtXU1EiCa2SiEey4WNFORO0qpnmtBFLikOf07rfvxn79UcqFYvEvR7G1AtxV7CAEayN5LV8LNEAXaGBPThuF0uO7UyAFombkRJkqLSLP61ORJKQCk04VqrpOrH2Uiw1I5yOCq1E0RiTPu7SpqECh1R56eTpEToySgcFkTQjNJqofy9SHCo1DH2zGWLdU/PeWPzPayY6uPRSJuJEU0GmQUHCkY7QuAHUYZISzYeGYCKZ+RWRHpaYaNPTTIpm/aeRacWd72CR1E5t99x2785K5eusnzwcwCGcgAsXUIZbqEAVCDzAC7zCm/VsvVsf1ud0NWdlN/swA+vrF1ThmH8=</latexit>

w̄ = w.w0
<latexit sha1_base64="PgQTCKL4k3YsO8o89kKN3yXB8xM=">AAACLHicbVDLSgNBEJyNrxhfUY9eBoPgKewGUY9BPXiMYB6QDaF3MpsMmX0w02uIy/6HX+EneNUP8CLiSfA73E1yMIkFDUVVN91dTiiFRtP8MHIrq2vrG/nNwtb2zu5ecf+goYNIMV5ngQxUywHNpfB5HQVK3goVB8+RvOkMrzO/+cCVFoF/j+OQdzzo+8IVDDCVusWK7QEOGMj4JqG25C6CUsGIzsksCqkd2w4oOrKTbrFkls0J6DKxZqREZqh1i992L2CRx31kErRuW2aInRgUCiZ5UrAjzUNgQ+jzdkp98LjuxJPfEnqSKj3qBiotH+lE/TsRg6f12HPSzuxkvehl4n9eO0L3shMLP4yQ+2y6yI0kxYBmQdGeUJyhHKcEmBLprZQNQAHDNM65LSiGj1kq1mIGy6RRKVvnZevurFS9muWTJ0fkmJwSi1yQKrklNVInjDyRF/JK3oxn4934NL6mrTljNnNI5mD8/ALyAqlM</latexit>

D D [{w̄}

<latexit sha1_base64="f+gmv0rGtMK/mFbgM09MeynCf9c=">AAACAnicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCQBlBQxkk8hCJFZ0v5+SU89m6W4OClY5PoIUPoEO0/Ag1P4KduCAJI600mtnV7o4XSWHQtr+tpeWV1bX1wkZxc2t7Z7e0t98wYawZr7NQhrrlUcOlULyOAiVvRZrTwJO86Q2vM7/5wLURobrDUcTdgPaV8AWjmEr3fjfpeFSTx3G3VLYr9gRkkTg5KUOOWrf00+mFLA64QiapMW3HjtBNqEbBJB8XO7HhEWVD2uftlCoacOMmk4vH5DhVesQPdVoKyUT9O5HQwJhR4KWdAcWBmfcy8T+vHaN/6SZCRTFyxaaL/FgSDEn2PukJzRnKUUoo0yK9lbAB1ZRhGtLMFhTDpywVZz6DRdI4rTjnFef2rFy9yvMpwCEcwQk4cAFVuIEa1IGBghd4hTfr2Xq3PqzPaeuSlc8cwAysr1/ZSphe</latexit>

fw̄

<latexit sha1_base64="f+gmv0rGtMK/mFbgM09MeynCf9c=">AAACAnicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCQBlBQxkk8hCJFZ0v5+SU89m6W4OClY5PoIUPoEO0/Ag1P4KduCAJI600mtnV7o4XSWHQtr+tpeWV1bX1wkZxc2t7Z7e0t98wYawZr7NQhrrlUcOlULyOAiVvRZrTwJO86Q2vM7/5wLURobrDUcTdgPaV8AWjmEr3fjfpeFSTx3G3VLYr9gRkkTg5KUOOWrf00+mFLA64QiapMW3HjtBNqEbBJB8XO7HhEWVD2uftlCoacOMmk4vH5DhVesQPdVoKyUT9O5HQwJhR4KWdAcWBmfcy8T+vHaN/6SZCRTFyxaaL/FgSDEn2PukJzRnKUUoo0yK9lbAB1ZRhGtLMFhTDpywVZz6DRdI4rTjnFef2rFy9yvMpwCEcwQk4cAFVuIEa1IGBghd4hTfr2Xq3PqzPaeuSlc8cwAysr1/ZSphe</latexit>

fw̄

Remark 2: we can’t really prove generalisation to unseen data, no
optimality guarantee on the number of token. In practice: reasonable

Fast BPE inference
• After training, we have an ordered list of merges (a ranked dictionary of token
pairs), namely .

• To tokenize new text:

• First, pre-tokenize into base symbols (characters or bytes).

• Then, greedily apply merges in rank order: for each merge rule, replace all
matching pairs in the sequence. This is computationally extensive.

• More efficient variant:

• Scan the sequence once, record all adjacent token pairs.

• Maintain a priority queue (heap) keyed by merge rank.

• Repeatedly take the best pair from the heap, merge it, and update only neighboring
pairs.

24

/!\ this is not equivalent to scanning from left to right
Remark: quasi-linear complexity: every successful merge replaces two tokens by one

<latexit sha1_base64="6h2BexM0OJMMBF8WHcbvGYiL8Gk=">AAACBXicbVDLSsNAFL3xWeur6tJNsAiuSiKiLotuXFawD2hDmUwn7dDJJM7ciDV07Se41Q9wJ279Dtf+iJM2C9t64MLhnHs5l+PHgmt0nG9raXlldW29sFHc3Nre2S3t7Td0lCjK6jQSkWr5RDPBJasjR8FasWIk9AVr+sPrzG8+MKV5JO9wFDMvJH3JA04JGsnrIHtExFQRORx3S2Wn4kxgLxI3J2XIUeuWfjq9iCYhk0gF0brtOjF6KVHIqWDjYifRLCZ0SPqsbagkIdNeOnl6bB8bpWcHkTIj0Z6ofy9SEmo9Cn2zGRIc6HkvE//z2gkGl17KZZwgk3QaFCTCxsjOGrB7XDGKYmQIoYqbX206IIpQND3NpCAfPmWtuPMdLJLGacU9r7i3Z+XqVd5PAQ7hCE7AhQuowg3UoA4U7uEFXuHNerberQ/rc7q6ZOU3BzAD6+sXKg6aRA==</latexit>

rank

h | e | l | l | o he | l | lo he | llo
<latexit sha1_base64="rBotIcwFIVRd51/SL82GjFCnxww=">AAACFnicbVC7SgNBFJ2NrxhfUUstlgTBKuyKqI0QtLGMYB6QLGF2cpMMmZ1dZu6KcdnGr/ATbPUD7MTW1tofcfIoTOKBC2fOuZc79/iR4Bod59vKLC2vrK5l13Mbm1vbO/ndvZoOY8WgykIRqoZPNQguoYocBTQiBTTwBdT9wfXIr9+D0jyUdziMwAtoT/IuZxSN1M4fthAeEDFRVA7SZmH8TPqQFrxLt50vOiVnDHuRuFNSJFNU2vmfVidkcQASmaBaN10nQi+hCjkTkOZasYaIsgHtQdNQSQPQXjK+IrWPjNKxu6EyJdEeq38nEhpoPQx80xlQ7Ot5byT+5zVj7F54CZdRjCDZZFE3FjaG9igSu8MVMBRDQyhT3PzVZn2qKEMT3MwW5IPH1KTizmewSGonJfes5N6eFstX03yy5IAUyDFxyTkpkxtSIVXCyBN5Ia/kzXq23q0P63PSmrGmM/tkBtbXL7YzoFs=</latexit>

rank[”he”] = 1
<latexit sha1_base64="zjy/Np26z3WNFWhPlEID58Vk4LY=">AAACFnicbVDLSsNAFJ34rPUVdamL0CK4KkkRdSMU3bisYB+QhjKZTtuhk0mYuRFryMav8BPc6ge4E7duXfsjTtMsbOuBC2fOuZc79/gRZwps+9tYWl5ZXVsvbBQ3t7Z3ds29/aYKY0log4Q8lG0fK8qZoA1gwGk7khQHPqctf3Q98Vv3VCoWijsYR9QL8ECwPiMYtNQ1jzpAHwAgkViMUreUPRMepiXvsto1y3bFzmAtEicnZZSj3jV/Or2QxAEVQDhWynXsCLwES2CE07TYiRWNMBnhAXU1FTigykuyK1LrWCs9qx9KXQKsTP07keBAqXHg684Aw1DNexPxP8+NoX/hJUxEMVBBpov6MbcgtCaRWD0mKQE+1gQTyfRfLTLEEhPQwc1sATZ6THUqznwGi6RZrThnFef2tFy7yvMpoENUQifIQeeohm5QHTUQQU/oBb2iN+PZeDc+jM9p65KRzxygGRhfv844oGo=</latexit>

rank[”lo”] = 2
<latexit sha1_base64="pn/E9NdO3/3ZSeHB5iGgbLO0Jec=">AAACF3icbVDLSsNAFJ34rPUVdSlCaBFclURF3QhFNy4r2Ae0oUymk3boZBJmbsQasvIr/AS3+gHuxK1L1/6I0zQL23rgwplz7uXOPV7EmQLb/jYWFpeWV1YLa8X1jc2tbXNnt6HCWBJaJyEPZcvDinImaB0YcNqKJMWBx2nTG16P/eY9lYqF4g5GEXUD3BfMZwSDlrrmQQfoAwAkEoth2i5lz4TzMC25lydds2xX7AzWPHFyUkY5al3zp9MLSRxQAYRjpdqOHYGbYAmMcJoWO7GiESZD3KdtTQUOqHKT7IzUOtRKz/JDqUuAlal/JxIcKDUKPN0ZYBioWW8s/ue1Y/Av3ISJKAYqyGSRH3MLQmucidVjkhLgI00wkUz/1SIDLDEBndzUFmDDx1Sn4sxmME8axxXnrOLcnparV3k+BbSPSugIOegcVdENqqE6IugJvaBX9GY8G+/Gh/E5aV0w8pk9NAXj6xervKDh</latexit>

rank[”llo”] = 3

Tokenisation in image (ViTs)

• For images, the simplest way in the spirit of a LLM is to directly
embed images:

• Split the image into a grid of fixed-size patches (e.g. 16×16 pixels).

• Flatten each patch and apply a linear projection → patch
embedding (a vector) so that they belong to .

• Add positional information (which patch is where).

• From now, treat those as text-tokens.

25

<latexit sha1_base64="upoq30TS7VatT9cd0mTJZnrPeyM=">AAACBHicbVDLSsNAFJ34rPVVdelmsAiuSiKiLotuXFaxD2hjmUwm7dDJJMzcCDVk6ye41Q9wJ279D9f+iJM2C9t64MLhnHu5h+PFgmuw7W9raXlldW29tFHe3Nre2a3s7bd0lCjKmjQSkep4RDPBJWsCB8E6sWIk9ARre6Pr3G8/MqV5JO9hHDM3JAPJA04JGKnXCwkMPS+9yx78fqVq1+wJ8CJxClJFBRr9yk/Pj2gSMglUEK27jh2DmxIFnAqWlXuJZjGhIzJgXUMlCZl200nmDB8bxcdBpMxIwBP170VKQq3HoWc284x63svF/7xuAsGlm3IZJ8AknT4KEoEhwnkB2OeKURBjQwhV3GTFdEgUoWBqmvkCfPSUmVac+Q4WSeu05pzXnNuzav2q6KeEDtEROkEOukB1dIMaqIkoitELekVv1rP1bn1Yn9PVJau4OUAzsL5+Aam2mWM=</latexit>

Rd

Multi-Modal tokenisation
• A key property of transformers is that they can process any sequence of tokens.

To handle multimodal data, we need everything (text, images, etc.) in token
form.

• Example (vision–language prompt):

“I find this image nice <img1> and this one too <img2>. What’s in them?”
Here, <img1> and <img2> are special tokens that stand for an image
representation.

• Pipeline idea:
Text: tokenized into text tokens.
Images: encoded into image tokens (patch embeddings or discrete codebook
IDs).

• The transformer then processes one joint sequence:

[text tokens … <img1 tokens> … <img2 tokens> …].

26

Pretraining data in practice 27

<latexit sha1_base64="lNmrXxA2t4u7HWZKX3a0Jc/x24s=">AAAFRXicjZRbb9MwFMeztcAotw0eebHoQEWqqqTrSvs2rQMhJLRCu4u0VJXjOK2pHVe2s1uUD8Wn4CMg3kA884Z4BeeyKVuKNEuN3L+Pf+fk7+M4c0qkMs1vS8ul8q3bd1buVu7df/Dw0era433JA4HwHuKUi0MHSkyJj/cUURQfzgWGzKH4wJn14vWDYywk4f5Qnc3xiMGJTzyCoNLSeK30znbwhPihgk5AoYhCqkdUsacxsWIrfKocL9yBSidREXgBLqQBOcf5/3YVDPkM+zIvDnVKwD3g6v0RsO0L7hv9OMCOjlxvtey6zaCaChYOt6P1WLM2c1oixcG11/5EWzKtA49QhQV2QY8zxn3QE/CEvoz5H7Gn0W7GbjY6RbjZaC+kMy4VPQM3SLLDKYMxqnsFlfE3GuZ1/ntyqjm1E+zUAUTQxYygOkDcxXXgcD6TdSA5IjDFDyhhffgJpjnMRtcsJmlv5MTtfJLLsj3BWbH2XiuFdqwFtrcL0Jv6Ppxi0CcUZ/CNBbZ0/ldxs3lhOkj7WqZHubs7HCRlLXS5VcQFVBHdXpMAUhA3IKhtdgGFsTDJoHGdAwXRDBw3QWLkgg7pmgX2ICksObJcG9vYdy9vTmW8WjUbZjJAcWJlk6qRjf549aftchQw7CtEoZRHljlXoxAKRRDF+hIGEs91rbr6Iz31IcNyFCaXPgLPtaIPmQv98xVI1PyOEDIpz5ijI+M3kdfXYnHR2lGgvM4oJP48UNhHaSIv0I5yEH9BgEsERvFNcQlEguhaAZpCAZFujatZFJmdR9oV67oHxcl+s2G1G9aHVnVrO/NnxXhqPDNqhmW8MraMt0bf2DNQ6XPpa+l76Uf5S/lX+Xf5Txq6vJTteWJcGeW//wBup6c4</latexit>

Dataset Size # Tokens Type of data
FineWeb 44TB 15T Web (English, filtered Common Crawl)

RefinedWeb 2.8TB 0.6T Web (mostly English, filtered Common Crawl)

Dolma 9.6TB 3.0T Mixed (web, academic, code, books, social)

SlimPajama 0.90TB 630B Mixed (filtered from Common Crawl)

C4 0.81TB 160B Web (English, filtered Common Crawl)

The Pile 0.83TB 380B Mixed (22 English sources)

ROOTS 1.6TB 340B Multilingual text (59 languages)

The Stack v2 68TB 900B Source code

• Modern LMs are trained on huge, mixed corpora rather than a single
dataset.

• Many open datasets are built on top of Common Crawl or similar
sources, which you can think of as an “arXiv of the web” that we then
filter, clean, and remix.

• Scale matters (we often train on trillions of tokens), but quality matters
more: deduplication, filtering, and smart mixtures usually beat “just
add more noisy web”.

Largue Language Models
Architectures

28

From RNNs to Transformers
• Pre-2017: NLP baselines were mostly RNN/LSTM/GRU encoder–decoders

(seq2seq), i.e. recurrent architectures:

• RNN bottlenecks: inherently sequential (poor GPU/TPU utilization), vanishing/
exploding gradients, and limited long-range context even with attention on top.

• Transformer (2017): replaces recurrence with self-attention, by processing all tokens
in parallel.

• What this enables:

• Parallelism (beats recurrence): full-sequence parallel compute leads to much
faster training.

• Long-range dependencies: attention connects any token pair directly.

• Simple, scalable block: repeating generic transformers blocks scales cleanly
to billions of params

29

<latexit sha1_base64="m/xGfiXkEmZag4AJQmW8M+VJ51A=">AAACF3icbVDLSsNAFJ34rPUVdSlCsAgVa0hE1I1QdOPCRQX7gDaEyXTaDp1MwsxEWkNWfoWf4FY/wJ24denaH3HSZmFbD1w4nHMv997jhZQIaVnf2tz8wuLScm4lv7q2vrGpb23XRBBxhKsooAFveFBgShiuSiIpboQcQ9+juO71r1O//oC5IAG7l8MQOz7sMtIhCEolufrewI3ZkZ1ctsIeKQ5cVjJNs5SKx7fJoasXLNMawZgldkYKIEPF1X9a7QBFPmYSUShE07ZC6cSQS4IoTvKtSOAQoj7s4qaiDPpYOPHojcQ4UErb6ARcFZPGSP07EUNfiKHvqU4fyp6Y9lLxP68Zyc6FExMWRhIzNF7UiaghAyPNxGgTjpGkQ0Ug4kTdaqAe5BBJldzEFkn6j4lKxZ7OYJbUTkz7zLTvTgvlqyyfHNgF+6AIbHAOyuAGVEAVIPAEXsAreNOetXftQ/sct85p2cwOmID29Quj9Z8J</latexit>

xn+1 = �(xn, ..., xn�L)

Transformers!
• Main Transformer Families

• Encoder-only:
Bidirectional attention over all tokens
Great for understanding tasks (classification, retrieval,
etc.)
Not natively generative (usually trained with masked
LM)
Examples: BERT, RoBERTa

• Decoder-only:
Causal (left-to-right) attention with a mask
Naturally generative: next-token prediction
Can still do comprehension via prompting
Examples: GPT, LLaMA, Mistral

• Encoder–decoder (seq2seq):
Encoder reads full input; decoder generates output with:
- self-attention (causal)
- cross-attention to encoder outputs at every layer
Strong for tasks needing full context before generating,
e.g. translation, summarisation, instruction tuning
Examples: T5, BART

30

Decoder-only Transformers
31

• A decoder-only Transformer is a stack of identical blocks, each combining
self-attention and a two-layer feed-forward network (with residuals +
layer norm).

• Attention layer: performs dot-product between every tokens. Memory
consuming but fast to compute.

• MLP layer: performs at least 2 matrix multiplications, computationally
intensive

In the following, I’ll focus on Llama-like models

Initial
embedding

Final
embedding

Transformer
Block

Sequence of
Tokens Token

<latexit sha1_base64="Z2xMz3Q3sYOeRrEbtNwFVBWNk6k=">AAACA3icbVC7TsMwFHXKq5RXgZHFokJiqKIEIWCsYGFgKBJ9SGkUOa7TWnXsyHZQS9SRT2CFD2BDrHwIMz+C22agLUe60tE59+ree8KEUaUd59sqrKyurW8UN0tb2zu7e+X9g6YSqcSkgQUTsh0iRRjlpKGpZqSdSILikJFWOLiZ+K1HIhUV/EGPEuLHqMdpRDHSRvKGgVu1bbs6DO6CcsWxnSngMnFzUgE56kH5p9MVOI0J15ghpTzXSbSfIakpZmRc6qSKJAgPUI94hnIUE+Vn05PH8MQoXRgJaYprOFX/TmQoVmoUh6YzRrqvFr2J+J/npTq68jPKk1QTjmeLopRBLeDkf9ilkmDNRoYgLKm5FeI+kghrk9LcFk0HT2OTiruYwTJpntnuhe3en1dq13k+RXAEjsEpcMElqIFbUAcNgIEAL+AVvFnP1rv1YX3OWgtWPnMI5mB9/QKmRJeQ</latexit>x1, ..., xL
<latexit sha1_base64="KPwibCSAR4EaCOpmt8vZWDszkmk=">AAAB/3icbVDLSsNAFL2pr1pfVZduBosgCCURUZdFNy5cVLAPaEOZTCftkMkkzEzEGrrwE9zqB7gTt36Ka3/ESZuFbT1w4XDOvdx7jxdzprRtf1uFpeWV1bXiemljc2t7p7y711RRIgltkIhHsu1hRTkTtKGZ5rQdS4pDj9OWF1xnfuuBSsUica9HMXVDPBDMZwRrI7Uee+ntiTPulSt21Z4ALRInJxXIUe+Vf7r9iCQhFZpwrFTHsWPtplhqRjgdl7qJojEmAR7QjqECh1S56eTcMToySh/5kTQlNJqofydSHCo1Cj3TGWI9VPNeJv7ndRLtX7opE3GiqSDTRX7CkY5Q9jvqM0mJ5iNDMJHM3IrIEEtMtEloZotmwVOWijOfwSJpnlad86pzd1apXeX5FOEADuEYHLiAGtxAHRpAIIAXeIU369l6tz6sz2lrwcpn9mEG1tcvHZGW0g==</latexit>xL+1… …

Repeated N times

Remark 1: a transformer layer preserves dimension across depth.

• Transformer Blocks:

Pre-training objective and packing
• Inputs are document packed, i.e., documents are concatenated and

form a giant sequence (masking or sequence packing are possible)

• Two possible ways to perform a prediction:

• Next-token prediction:
It’s a causal LM objective: predict token from .

• Fill In the Middle (FIM): remove a fraction 10% of the token to
predict

[prefix] <FIM_MIDDLE> [suffix] <FIM_END> [middle]

32

<latexit sha1_base64="meeeWryNuUlCwUroevw9mw75rh8=">AAAB+3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzQOSJcxOZpMhsw9mesW47Cd41Q/wJl79GM/+iJNkDyaxoKGo6qa7y4ul0Gjb31ZhZXVtfaO4Wdra3tndK+8fNHWUKMYbLJKRantUcylC3kCBkrdjxWngSd7yRjcTv/XIlRZR+IDjmLsBHYTCF4yike6fetgrV+yqPQVZJk5OKpCj3iv/dPsRSwIeIpNU645jx+imVKFgkmelbqJ5TNmIDnjH0JAGXLvp9NSMnBilT/xImQqRTNW/EykNtB4HnukMKA71ojcR//M6CfpXbirCOEEestkiP5EEIzL5m/SF4gzl2BDKlDC3EjakijI06cxtQTF6zkwqzmIGy6R5VnUuqs7deaV2nedThCM4hlNw4BJqcAt1aACDAbzAK7xZmfVufVifs9aClc8cwhysr1+oJZV+</latexit>xt
<latexit sha1_base64="7XSty7bcnFXJ9ZxOJM4KZEkh1JM=">AAAB/nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6sFD0YvHCvYD2lA22027drMJuxOxhoI/wav+AG/i1b/i2T/ipu3Btj4YeLw3w8w8PxZco+N8W7ml5ZXVtfx6YWNza3unuLtX11GiKKvRSESq6RPNBJeshhwFa8aKkdAXrOEPrjO/8cCU5pG8w2HMvJD0JA84JWik+mMnvcRRp1hyys4Y9iJxp6QEU1Q7xZ92N6JJyCRSQbRuuU6MXkoUcirYqNBONIsJHZAeaxkqSci0l46vHdlHRunaQaRMSbTH6t+JlIRaD0PfdIYE+3rey8T/vFaCwYWXchknyCSdLAoSYWNkZ6/bXa4YRTE0hFDFza027RNFKJqAZrYgHzxlqbjzGSyS+knZPSu7t6elytU0nzwcwCEcgwvnUIEbqEINKNzDC7zCm/VsvVsf1uekNWdNZ/ZhBtbXLwNpltA=</latexit>x<t

Inside the Transformer

33

Description of a Transformer block
• Goal: a simple block we can stack hundreds of times that

- uses only matrix multiplies (GPU-friendly)
- can model long-range interactions
- stays trainable at scale

• 3 components are composed:

• Multi-head Attention:
- What: each token attends to other tokens while
 keeping position (with a causal mask in LMs).
- Why: lets the model route information flexibly and
capture long-range dependencies in one step.

• MLP (feed-forward network)
- What: 2-layer MLP (often with expansion + non-linearity like SwiGLU).
- Why: gives non-linear feature transforms and per-token capacity

• RMSNorm + residual connections
- What: normalize activations and add skip-connections around each sub-layer.
- Why: keep activations well-scaled, stabilize gradients, and make it possible to
train very deep stacks of identical blocks.

34

FLOPs count
• A FLoating Point Operation (FLOP) is one of the elementary

operations performed by a computation unit. We use it to measure
training/inference compute and to size jobs.

• FLOPs guide LLM architecture design; the goal is high effective
FLOPS to reduce training time and avoid wasting GPU hours

• We’ll see in the next lecture that wall-clock time depends also on
other considerations (e.g., IO access)

35

Remark: “FLOP vs FLOPs vs FLOPS: FLOP=one operation;
FLOPs=operation count; FLOPS=operations per second.

<latexit sha1_base64="doPJwYElANW1QXrOeuRPDuYhcVw=">AAACKHicbVBLTsMwFHT4lvIrsGRjUSGxQFWCELAssGFZEP1ITagc122tOk5kvyBKlFtwCo7AFg7ADnULF8Fpu6AtI1kazbyneR4/ElyDbQ+thcWl5ZXV3Fp+fWNza7uws1vTYawoq9JQhKrhE80El6wKHARrRIqRwBes7vevM7/+yJTmobyHQcS8gHQl73BKwEitQunS5RK7AYGe7yd36UMSuMADprFMj5/wjGkWinbJHgHPE2dCimiCSqvw47ZDGgdMAhVE66ZjR+AlRAGngqV5N9YsIrRPuqxpqCQm2ktG/0rxoVHauBMq8yTgkfp3IyGB1oPAN5PZjXrWy8T/vGYMnQsv4TKKgUk6DurEAkOIs5JwmytGQQwMIVRxcyumPaIIBVPlVArw/nNqWnFmO5gntZOSc1Zybk+L5atJPzm0jw7QEXLQOSqjG1RBVUTRC3pD7+jDerU+rS9rOB5dsCY7e2gK1vcvbymngA==</latexit>

A 2 Rm⇥n, x 2 Rn what are the FLOPS to obtain ?
<latexit sha1_base64="LPWLlzHTvKUwuxEFUfP131QCSyk=">AAACDXicbVBLTsMwFHTKr5RfoEs2FhUSqypBCFgW2LAsiH6kJlSO67RWHSeyHUSIcgaOwBYOwA6x5QysuQhOmwVtGelJo5n39EbjRYxKZVnfRmlpeWV1rbxe2djc2t4xd/faMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vHGV7nfeSBC0pDfqSQiboCGnPoUI6Wlvlm9eIQO5dAJkBp5Xnqb3Qd9s2bVrQngIrELUgMFmn3zxxmEOA4IV5ghKXu2FSk3RUJRzEhWcWJJIoTHaEh6mnIUEOmmk/AZPNTKAPqh0MMVnKh/L1IUSJkEnt7MM8p5Lxf/83qx8s/dlPIoVoTj6SM/ZlCFMG8CDqggWLFEE4QF1VkhHiGBsNJ9zXxRdPyU6Vbs+Q4WSfu4bp/W7ZuTWuOy6KcM9sEBOAI2OAMNcA2aoAUwSMALeAVvxrPxbnwYn9PVklHcVMEMjK9fxlOcDw==</latexit>

Ax 2 Rm

<latexit sha1_base64="WMDU67Xx4uZWlNbmFjTte6/Lok8=">AAACG3icbZC9TsMwEMed8lXKV4GRJVAhIVWK4goBY4GFsUj0Q2qjyHHd1qrjRLaDKFFmnoJHYIUHYEOsDMy8CE6agbacZOl3/7vTnf9eyKhUtv1tFJaWV1bXiuuljc2t7Z3y7l5LBpHApIkDFoiOhyRhlJOmooqRTigI8j1G2t74Oq2374mQNOB3ahISx0dDTgcUI6Ult3x46cYQJg8urKZU01SrWpaVZVxnuqdiW3YW5iLAHCogj4Zb/un1Axz5hCvMkJRdaIfKiZFQFDOSlHqRJCHCYzQkXY0c+UQ6cfaVxDzWSt8cBEI/rsxM/TsRI1/Kie/pTh+pkZyvpeJ/tW6kBhdOTHkYKcLxdNEgYqYKzNQXs08FwYpNNCAsqL7VxCMkEFbavZktio4fE+0KnPdgEVo1C55Z8Pa0Ur/K/SmCA3AETgAE56AObkADNAEGT+AFvII349l4Nz6Mz2lrwchn9sFMGF+/xtWgHQ==</latexit>

A11x1 +A12x2 + ...+A1nxn
<latexit sha1_base64="63iyilvXTOqgVqN+qkzl2r5jojo=">AAAB/3icbVDLSgNBEOz1GeMr6tHLYBDiwbAbRD0GvXiMYB6QLGF2MpsMmZldZmaFuOTgJ3jVD/AmXv0Uz/6Ik2QPJrGgoajqprsriDnTxnW/nZXVtfWNzdxWfntnd2+/cHDY0FGiCK2TiEeqFWBNOZO0bpjhtBUrikXAaTMY3k785iNVmkXywYxi6gvclyxkBBsrNUWpIs+9s26h6JbdKdAy8TJShAy1buGn04tIIqg0hGOt254bGz/FyjDC6TjfSTSNMRniPm1bKrGg2k+n547RqVV6KIyULWnQVP07kWKh9UgEtlNgM9CL3kT8z2snJrz2UybjxFBJZovChCMTocnvqMcUJYaPLMFEMXsrIgOsMDE2obkthg2fxjYVbzGDZdKolL3Lsnd/UazeZPnk4BhOoAQeXEEV7qAGdSAwhBd4hTfn2Xl3PpzPWeuKk80cwRycr1/zjZYX</latexit>

m(2n� 1)FLOPS

The attention layer
36

+RoPe

Q: query, K:key, V:value

RoPe (Rotary Positional Embedding)
How transformers learn about order

• The goal of RoPe is to give self-attention a sense of token order
without fixed positional vectors. It relies on a maximum context length
N.

• The idea of a RoPe is to encode the position "l" of a token via

• Why is the positional encoder like this? Fourier flavour and covariance
to translation!

37

<latexit sha1_base64="v8ZNtWs1vDsYEX5V7wokZrOpRD0=">AAACD3icbVDLSsNAFJ34rPUVFVduBovgqiQi6rLoxmUV+4Amhslk0g6dTMLMRKwhH+EnuNUPcCdu/QTX/oiTNgvbeuDC4Zx7uYfjJ4xKZVnfxsLi0vLKamWtur6xubVt7uy2ZZwKTFo4ZrHo+kgSRjlpKaoY6SaCoMhnpOMPrwq/80CEpDG/U6OEuBHqcxpSjJSWPHP/0ctY7lAOnQipge9nt/l94Jk1q26NAeeJXZIaKNH0zB8niHEaEa4wQ1L2bCtRboaEopiRvOqkkiQID1Gf9DTlKCLSzcbxc3iklQCGsdDDFRyrfy8yFEk5iny9WWSUs14h/uf1UhVeuBnlSaoIx5NHYcqgimHRBQyoIFixkSYIC6qzQjxAAmGlG5v6oujwKdet2LMdzJP2Sd0+q9s3p7XGZdlPBRyAQ3AMbHAOGuAaNEELYJCBF/AK3oxn4934MD4nqwtGebMHpmB8/QJMRJ18</latexit>

xl 2 Rd

<latexit sha1_base64="pNP8uzIZOOQe9XBZfSNlVjRDwqc=">AAACLHicbVBLTsMwEHXKr5RfgSUbiwqJRVWSCgEbpAo2LAuiH6lJI8d1W6uOE9kOokS9B6fgCGzhAGwQYoXEOXDaLPrhSR69eTOjGT8vZFQq0/w0MkvLK6tr2fXcxubW9k5+d68ug0hgUsMBC0TTQ5IwyklNUcVIMxQE+R4jDW9wndQbD0RIGvB7NQyJ46Mep12KkdKSmy8/uuyypUNbFJNInSKcymzKoe0j1fe8+G7Ujjsn5ZGbL5glcwy4SKyUFECKqpv/sTsBjnzCFWZIypZlhsqJkVAUMzLK2ZEkIcID1CMtTTnyiXTi8d9G8EgrHdgNhH5cwbE6PREjX8qh7+nO5E45X0vE/2qtSHUvnJjyMFKE48mibsSgCmBiFOxQQbBiQ00QFlTfCnEfCYSVtnNmi6KDp8QVa96DRVIvl6yzknV7Wqhcpf5kwQE4BMfAAuegAm5AFdQABs/gFbyBd+PF+DC+jO9Ja8ZIZ/bBDIzfPx8zqNI=</latexit>

xl = [xr
l , x

i
l], x

r
l , x

i
l 2 Rd/2 and to define

<latexit sha1_base64="F8GZuU0dwi1BUZvDvzXDjAU863w=">AAACNHicbZDLSsNAFIYnXmu9VV26GSyCIpSkiIogFN24kgq2Ck0Nk+mkHTq5MHMirSHv4lP4CG51K7grbn0GJ21BW/1h4Oc/53DOfG4kuALTfDdmZufmFxZzS/nlldW19cLGZl2FsaSsRkMRyjuXKCZ4wGrAQbC7SDLiu4Ldut2LrH77wKTiYXAD/Yg1fdIOuMcpAR05hVO7QwD3HIHP8F7PkQe2T6DjeglPew7fZ/dJ+SexI45tTxKaiPQqdQpFs2QOhf8aa2yKaKyqUxjYrZDGPguACqJUwzIjaCZEAqeCpXk7ViwitEvarKFtQHymmsnwjyne1UkLe6HULwA8TH9PJMRXqu+7ujO7V03XsvC/WiMG76SZ8CCKgQV0tMiLBYYQZ8Bwi0tGQfS1IVRyfSumHaIhgMY6sQV49zGjYk0z+Gvq5ZJ1VLKuD4uV8zGfHNpGO2gPWegYVdAlqqIaougJvaBX9GY8Gx/GwPgctc4Y45ktNCHj6xvij6xS</latexit>

x̂l = (xr + ixi)e
2i⇡ l

N

<latexit sha1_base64="Yb22g3oWysbeflV33h9QgF/+wBc=">AAACEnicbVDLSsNAFJ3UV62vqBvBzWARKkJJRNRl0Y0LFxXsA9oQJtNpO3QyiTM30hrqV/gJbvUD3Ilbf8C1P2LSdmFbD1w4nHMv997jhYJrsKxvI7OwuLS8kl3Nra1vbG6Z2ztVHUSKsgoNRKDqHtFMcMkqwEGweqgY8T3Bal7vKvVrD0xpHsg7GITM8UlH8janBBLJNfcKN/0jVzRBcSI7gt3jvhuLY3vomnmraI2A54k9IXk0Qdk1f5qtgEY+k0AF0bphWyE4MVHAqWDDXDPSLCS0RzqskVBJfKadePTBEB8mSgu3A5WUBDxS/07ExNd64HtJp0+gq2e9VPzPa0TQvnBiLsMImKTjRe1IYAhwGgduccUoiEFCCFU8uRXTLlGEQhLa1Bbgvcc0FXs2g3lSPSnaZ0X79jRfupzkk0X76AAVkI3OUQldozKqIIqe0At6RW/Gs/FufBif49aMMZnZRVMwvn4BUfed8A==</latexit>

(Lx)l , xl+1Let then
<latexit sha1_base64="2mRbz0RnJ0Cd1t6EUS9b6ZLB4gY=">AAACLXicbVBLSgNBFOzxb/xFXbppDIKrMKOiboSgGxciCkYDmTj0dN6YJj0fut9o4jAH8RQewa0ewIUgblx4DTufhVELGoqqerzX5SdSaLTtN2tsfGJyanpmtjA3v7C4VFxeudRxqjhUeSxjVfOZBikiqKJACbVEAQt9CVd++6jnX92C0iKOLrCbQCNkN5EIBGdoJK+47d6JJrQYZied3JMHcJ25gWI823ITQd2QYcsPMpHnp3nZNTHa8aRXLNlluw/6lzhDUiJDnHnFT7cZ8zSECLlkWtcdO8FGxhQKLiEvuKmGhPE2u4G6oRELQTey/udyumGUJg1iZV6EtK/+nMhYqHU39E2yd63+7fXE/7x6isF+IxNRkiJEfLAoSCXFmPaaok2hgKPsGsK4EuZWylvMdIOmz5EtKNr3uWnF+d3BX3K5VXZ2y875TqlyOOxnhqyRdbJJHLJHKuSYnJEq4eSBPJFn8mI9Wq/Wu/UxiI5Zw5lVMgLr6xt6iKoj</latexit>

cLxl = e
2⇡i
N .x̂l (translating is a multiplication)

Also, relative positions are well encoded:
<latexit sha1_base64="IOTRdJ5ApxhkYq7/LYVUTWkg9gY=">AAACNHicbVDLSsNAFJ3UV31HXboZLIIKlqSIiiAU3bgSBWuFppbJdNIOmTyYuRFryL/4FX6CW90K7opbv8FJzcKqBwYO55zLvXPcWHAFlvVmlCYmp6ZnyrNz8wuLS8vmyuq1ihJJWYNGIpI3LlFM8JA1gINgN7FkJHAFa7r+ae4375hUPAqvYBCzdkB6Ifc4JaCljnnk9Ang+464TXeygvv4GLPblDueJDStOTHHW/6u2M7OszzoQBTnqY5ZsarWCPgvsQtSQQUuOubQ6UY0CVgIVBClWrYVQzslEjgVLJtzEsViQn3SYy1NQxIw1U5Hf8zwpla62IukfiHgkfpzIiWBUoPA1cmAQF/99nLxP6+VgHfYTnkYJ8BC+r3ISwSGCOeF4S6XjIIYaEKo5PpWTPtENwO61rEtwP2HTLdi/+7gL7muVe39qn25V6mfFP2U0TraQFvIRgeojs7QBWogih7RM3pBr8aT8W4MjY/vaMkoZtbQGIzPL3aHq24=</latexit>

x̂⇤
l x̂k = ei

2⇡(k�l)
N x>

l xk

Attention layers 38

• Note: Including the previously introduced RoPE, these operations are
not permutation-invariant, they preserve positional information.

Let the "stable implementation" of the softmax:

Attention

The attention layer processes:
<latexit sha1_base64="Wj+pJOTnF88wdHh2ykxhOL9UDs4=">AAACFXicbVC7TsMwFHXKq5RXgLGLRYXEUEUJQsBYwcLAUBB9SG2IHNdtrTpOajtIJcrAV/AJrPABbIiVmZkfwWk70JYjXenonHt17z1+xKhUtv1t5JaWV1bX8uuFjc2t7R1zd68uw1hgUsMhC0XTR5IwyklNUcVIMxIEBT4jDX9wmfmNByIkDfmdGkXEDVCP0y7FSGnJM4tDzylbllUeetdtymE7QKrv+8ltet/xzJJt2WPAReJMSQlMUfXMn3YnxHFAuMIMSdly7Ei5CRKKYkbSQjuWJEJ4gHqkpSlHAZFuMn4ihYda6cBuKHRxBcfq34kEBVKOAl93ZjfKeS8T//NaseqeuwnlUawIx5NF3ZhBFcIsEdihgmDFRpogLKi+FeI+EggrndvMFkUHj6lOxZnPYJHUjy3n1HJuTkqVi2k+eVAEB+AIOOAMVMAVqIIawOAJvIBX8GY8G+/Gh/E5ac0Z05l9MAPj6xd40Z58</latexit>

q1, ..., qL 2 Rd

<latexit sha1_base64="2A26RReykft0jZefQzlTgQMqzw4=">AAACGHicbVDLSsNAFJ34rPUVdSnIYBFdlJCIqMuiGxcuqtgHNDVMptN2yGQSZiZCDdn5FX6CW/0Ad+LWnWt/xEnbhW09cOFwzr3ce48fMyqVbX8bc/MLi0vLhZXi6tr6xqa5tV2XUSIwqeGIRaLpI0kY5aSmqGKkGQuCQp+Rhh9c5n7jgQhJI36nBjFph6jHaZdipLTkmXuB55QtyyoHXnp9mLmUQzdEqu/76W123/HMkm3ZQ8BZ4oxJCYxR9cwftxPhJCRcYYakbDl2rNopEopiRrKim0gSIxygHmlpylFIZDsd/pHBA610YDcSuriCQ/XvRIpCKQehrzvzG+W0l4v/ea1Edc/bKeVxogjHo0XdhEEVwTwU2KGCYMUGmiAsqL4V4j4SCCsd3cQWRYPHTKfiTGcwS+rHlnNqOTcnpcrFOJ8C2AX74Ag44AxUwBWoghrA4Am8gFfwZjwb78aH8TlqnTPGMztgAsbXL7bpn60=</latexit>

k1, ..., kL0 2 Rd

Value:

Query:

Key:
Output:

<latexit sha1_base64="MWkJTDXRQh/NjkLqf5GBQ9c0kLA=">AAACG3icbVC7TsNAEDzzDOFloKQ5iFAoIstGCCgjaCgoAiIPKTbW+XxJTjmfrbtzpGC55iv4BFr4ADpES0HNj2AnKUjCSCuNZna1u+NFjEplmt/awuLS8spqYa24vrG5ta3v7DZkGAtM6jhkoWh5SBJGOakrqhhpRYKgwGOk6fWvcr85IELSkN+rYUScAHU57VCMVCa5+sHAtSqGYVQGbnJTTm3KoR0g1fO85C59SPxy6uol0zBHgPPEmpASmKDm6j+2H+I4IFxhhqRsW2aknAQJRTEjadGOJYkQ7qMuaWeUo4BIJxm9ksKjTPFhJxRZcQVH6t+JBAVSDgMv68zPlLNeLv7ntWPVuXASyqNYEY7HizoxgyqEeS7Qp4JgxYYZQVjQ7FaIe0ggrLL0prYo2n/MU7FmM5gnjRPDOjOs29NS9XKSTwHsg0NwDCxwDqrgGtRAHWDwBF7AK3jTnrV37UP7HLcuaJOZPTAF7esXMiyhAA==</latexit>

v1, ..., vL0 2 Rd0

<latexit sha1_base64="YssOQOtAOkHF5nQxN+w4qv3YAk4=">AAACGHicbVDLSsNAFJ34rPUVdSnIYBFdlJCIqMuiGxcuqtgHNDVMJpN26GQSZiZCDNn5FX6CW/0Ad+LWnWt/xKTtwrYeuHA4517uvceNGJXKNL+1ufmFxaXl0kp5dW19Y1Pf2m7KMBaYNHDIQtF2kSSMctJQVDHSjgRBgctIyx1cFn7rgQhJQ36nkoh0A9Tj1KcYqVxy9L3EsaqGYVQT59qmHNoBUn3XTW+z+9Q7zBy9YhrmEHCWWGNSAWPUHf3H9kIcB4QrzJCUHcuMVDdFQlHMSFa2Y0kihAeoRzo55SggspsO/8jgQa540A9FXlzBofp3IkWBlEng5p3FmXLaK8T/vE6s/PNuSnkUK8LxaJEfM6hCWIQCPSoIVizJCcKC5rdC3EcCYZVHN7FF0cFjkYo1ncEsaR4b1qlh3ZxUahfjfEpgF+yDI2CBM1ADV6AOGgCDJ/ACXsGb9qy9ax/a56h1ThvP7IAJaF+/5mSfyQ==</latexit>

y1, ..., yL 2 Rd0

• Note: During training, .
<latexit sha1_base64="evz9Ny4vDY6zNDQiITWxLtvTasE=">AAAB/HicbVDLSgNBEOz1GeMr6tHLYBA9hV0R9SIEvXjIIYJ5QLKE2clsMmT2wUyvEEP8BK/6Ad7Eq//i2R9xNtmDSSxoKKq66e7yYik02va3tbS8srq2ntvIb25t7+wW9vbrOkoU4zUWyUg1Paq5FCGvoUDJm7HiNPAkb3iD29RvPHKlRRQ+4DDmbkB7ofAFo5hKlevKSadQtEv2BGSROBkpQoZqp/DT7kYsCXiITFKtW44dozuiCgWTfJxvJ5rHlA1oj7cMDWnAtTua3Domx0bpEj9SpkIkE/XvxIgGWg8Dz3QGFPt63kvF/7xWgv6VOxJhnCAP2XSRn0iCEUkfJ12hOEM5NIQyJcythPWpogxNPDNbUAyexiYVZz6DRVI/KzkXJef+vFi+yfLJwSEcwSk4cAlluIMq1IBBH17gFd6sZ+vd+rA+p61LVjZzADOwvn4BUH6VOQ==</latexit>

L = L0

<latexit sha1_base64="D52Qo3tgg/UIcOeF4yK4QsNAaPI=">AAACf3icbZHNSyMxGMYz41etX1VveglbFivslhkRv6AgevHgQZetCk0dMmmmjU1mxiQjrWGO/pGePfpPmGkrrHVfCDw87/PmDb+EKWdKe96r487Mzs0vlBbLS8srq2uV9Y0blWSS0CZJeCLvQqwoZzFtaqY5vUslxSLk9Dbsnxf92ycqFUviv3qY0rbA3ZhFjGBtraDyghTrCnwCkcC6F4bmT35vLndyiHQy7f1CjxnulMcTtcFuwGADokhiYhAdpLWBNX4XQ4OgD+3ZzQ1SmQjMQ8P/vHWce5jKBZWqV/dGBb8LfyKqYFJXQeUNdRKSCRprwrFSLd9LddtgqRnhNC+jTNEUkz7u0paVMRZUtc0IVw5/WqcDo0TaE2s4cv+dMFgoNRShTRYA1HSvMP/Xa2U6OmobFqeZpjEZL4oyDi3Kgj3sMEmJ5kMrMJHMvhWSHrb8tP2hL1s06z8XVPxpBt/FzV7dP6j71/vV07MJnxLYBj9ADfjgEJyCC3AFmoCAd2fd2XK2XcfdceuuN466zmRmE3wp9/gDWk3A1A==</latexit>

� : RL0
! RL0

, �(x)i =
exp(xi �maxk xk)PL0

j=1 exp(xj �maxk xk)

Then, perform the attention step:

FLOPs:

<latexit sha1_base64="hm08+V/1xBy4Mp5n+FRLu9B8axc=">AAACMHicbVDLTsJAFJ3iC/GFunQzkRh0Q1pj0A0J0Y0LF5gImlBopsMAE2baOnNLgk3/xK/wE9zqB+jKGHd+hW1h4eskc3Nyzr25d44bCK7BNF+N3Nz8wuJSfrmwsrq2vlHc3GppP1SUNakvfHXjEs0E91gTOAh2EyhGpCvYtTs6S/3rMVOa+94VTALWkWTg8T6nBBLJKVYnjqjZOpROJMo1K+5GF+XY1nwgyf6tI7o2+AEepWZ8kNVxVp1iyayYGfBfYs1ICc3QcIofds+noWQeUEG0bltmAJ2IKOBUsLhgh5oFhI7IgLUT6hHJdCfK/hfjvUTp4b6vkucBztTvExGRWk+km3RKAkP920vF/7x2CP2TTsS9IATm0emifigw+DgNC/e4YhTEJCGEKp7ciumQKEIhifTHFuCjuzQV63cGf0nrsGJVK9blUal+Ossnj3bQLtpHFjpGdXSOGqiJKLpHj+gJPRsPxovxZrxPW3PGbGYb/YDx+QVj6qp7</latexit>

yl =
L0X

l0=1

�(q>l kl0)l0vl0 or more simply
<latexit sha1_base64="bMRHEWzSNy6dgcIkLNB4Sda4JTQ=">AAACDHicbVDLSsNAFJ34rPUV69JNsAh1UxIRdSMU3bisYB/QxDKZTtohk4czN8UY+gt+glv9AHfi1n9w7Y84bbOwrQcuHM65l3M5bsyZBNP81paWV1bX1gsbxc2t7Z1dfa/UlFEiCG2QiEei7WJJOQtpAxhw2o4FxYHLacv1r8d+a0iFZFF4B2lMnQD3Q+YxgkFJXb2UXtqS9QNcefDvbYji42FXL5tVcwJjkVg5KaMc9a7+Y/cikgQ0BMKxlB3LjMHJsABGOB0V7UTSGBMf92lH0RAHVDrZ5PeRcaSUnuFFQk0IxkT9e5HhQMo0cNVmgGEg572x+J/XScC7cDIWxgnQkEyDvIQbEBnjIoweE5QATxXBRDD1q0EGWGACqq6ZFGD+00i1Ys13sEiaJ1XrrGrdnpZrV3k/BXSADlEFWegc1dANqqMGIugRvaBX9KY9a+/ah/Y5XV3S8pt9NAPt6xdHaJvN</latexit>

y = �(qk>)v

<latexit sha1_base64="6Mc/Ei9T84KG7qGP4rYNTaIXeZg=">AAACBXicbVC7TgJBFL2LL8QXamkzkRgwJGSX+CqJNhYUmMgjgQ2ZnZ2FCbMPZ2ZNkFD7Cbb6AXbG1u+w9kccYAsBT3KTk3Puzbk5TsSZVKb5baRWVtfWN9Kbma3tnd297P5BQ4axILROQh6KloMl5SygdcUUp61IUOw7nDadwc3Ebz5SIVkY3KthRG0f9wLmMYKVluxqNV8ou8XzYtnNn3azObNkToGWiZWQHCSodbM/HTcksU8DRTiWsm2ZkbJHWChGOB1nOrGkESYD3KNtTQPsU2mPpk+P0YlWXOSFQk+g0FT9ezHCvpRD39GbPlZ9uehNxP+8dqy8K3vEgihWNCCzIC/mSIVo0gBymaBE8aEmmAimf0WkjwUmSvc0l6LY4GmsW7EWO1gmjXLJuihZd2e5ynXSTxqO4BgKYMElVOAWalAHAg/wAq/wZjwb78aH8TlbTRnJzSHMwfj6BcJPl4U=</latexit>

LL0(2d+ 5 + 2d0)

Multi-Head Attention 39

• Self-attention: typically

• Multi-head Attention

• Group Query Attention:

• Attention is always combined with linear layers

• Some structural constraints and redundancies (to save FLOPs) can be
introduced into these layers while still maintaining good expressivity.

• A typical design uses independent attention modules ("heads")
for the queries, while only key-value heads are instantiated and
shared across several query matrices.

<latexit sha1_base64="jz+j8ksZLCGZVPV3FQj7xTyUeTg=">AAACC3icbVDLSsNAFJ34rPWV6tLNYBFcSElE1E2h6KbLCvYBbQiTyaQdOpnEmUmlhnyCn+BWP8CduPUjXPsjTtssbOuBC4dz7uVcjhczKpVlfRsrq2vrG5uFreL2zu7evlk6aMkoEZg0ccQi0fGQJIxy0lRUMdKJBUGhx0jbG95O/PaICEkjfq/GMXFC1Oc0oBgpLblmqe4+VOtuOhxlVfsMhlXfNctWxZoCLhM7J2WQo+GaPz0/wklIuMIMSdm1rVg5KRKKYkayYi+RJEZ4iPqkqylHIZFOOn09gyda8WEQCT1cwan69yJFoZTj0NObIVIDuehNxP+8bqKCayelPE4U4XgWFCQMqghOeoA+FQQrNtYEYUH1rxAPkEBY6bbmUhQdPmW6FXuxg2XSOq/YlxX77qJcu8n7KYAjcAxOgQ2uQA3UQQM0AQaP4AW8gjfj2Xg3PozP2eqKkd8cgjkYX78sf5qN</latexit>

Hq = Hkv = 1,m = d

<latexit sha1_base64="zjuuj1IWj61EmvvbHNLDag/w/dc=">AAACEHicbVDLSsNAFJ34rPUVFdy4GSyCCymJiLqpFN10WcE+oA1hMpm0QyaPzkwKNeYn/AS3+gHuxK1/4NofcdpmYVsPXDj3nHu5l+PEjAppGN/a0vLK6tp6YaO4ubW9s6vv7TdFlHBMGjhiEW87SBBGQ9KQVDLSjjlBgcNIy/Hvxn5rSLigUfggRzGxAtQLqUcxkkqy9cOanfrDrFKzBzfmGVTdIAsqrq2XjLIxAVwkZk5KIEfd1n+6boSTgIQSMyRExzRiaaWIS4oZyYrdRJAYYR/1SEfREAVEWOnk/wyeKMWFXsRVhRJO1L8bKQqEGAWOmgyQ7It5byz+53US6V1bKQ3jRJIQTw95CYMyguMwoEs5wZKNFEGYU/UrxH3EEZYqspkrkvqPmUrFnM9gkTTPy+Zl2by/KFVv83wK4Agcg1NggitQBTVQBw2AwRN4Aa/gTXvW3rUP7XM6uqTlOwdgBtrXL04DnNA=</latexit>

Hkv = Hq > 1, Hqm = d

<latexit sha1_base64="4M5pLewAGyDFTYrNilJP7qjzUSw=">AAACEHicbZDLSsNAFIYnXmu9RQU3bgaL4EJKIqJuLEU3XVawF2hDmEwm7ZDJpTOTQo15CR/BrT6AO3HrG7j2RZy2WdjWHw58/OcczuF3YkaFNIxvbWl5ZXVtvbBR3Nza3tnV9/abIko4Jg0csYi3HSQIoyFpSCoZacecoMBhpOX4d+N+a0i4oFH4IEcxsQLUC6lHMZLKsvXDmj2o1OzUH2YV8wwqGmTBjWvrJaNsTAQXwcyhBHLVbf2n60Y4CUgoMUNCdEwjllaKuKSYkazYTQSJEfZRj3QUhiggwkon/2fwRDku9CKuKpRw4v7dSFEgxChw1GSAZF/M98bmf71OIr1rK6VhnEgS4ukhL2FQRnAcBnQpJ1iykQKEOVW/QtxHHGGpIpu5Iqn/mKlUzPkMFqF5XjYvy+b9Ral6m+dTAEfgGJwCE1yBKqiBOmgADJ7AC3gFb9qz9q59aJ/T0SUt3zkAM9K+fgFOCZzR</latexit>

Hq > Hkv > 1, Hqm = d

<latexit sha1_base64="3qdfec7cEHBCKDEhQGx3Cf7WOGg=">AAAB+3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzQOSJcxOZpMhsw9neoW47Cd41Q/wJl79GM/+iJNkDyaxoKGo6qa7y4ul0Gjb31ZhZXVtfaO4Wdra3tndK+8fNHWUKMYbLJKRantUcylC3kCBkrdjxWngSd7yRjcTv/XElRZR+IDjmLsBHYTCF4yike5bvcdeuWJX7SnIMnFyUoEc9V75p9uPWBLwEJmkWnccO0Y3pQoFkzwrdRPNY8pGdMA7hoY04NpNp6dm5MQofeJHylSIZKr+nUhpoPU48ExnQHGoF72J+J/XSdC/clMRxgnykM0W+YkkGJHJ36QvFGcox4ZQpoS5lbAhVZShSWduC4rRc2ZScRYzWCbNs6pzUXXuziu16zyfIhzBMZyCA5dQg1uoQwMYDOAFXuHNyqx368P6nLUWrHzmEOZgff0Cbu+VWg==</latexit>

Wq

<latexit sha1_base64="dPHhgu9Yq174gD+5kiV01wkY9Yk=">AAAB+3icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWNF+wFtKJvtpl2y2YTdiVBDfoJX/QHexKs/xrN/xG2bg60+GHi8N8PMPD8RXKPjfFmlldW19Y3yZmVre2d3r7p/0NZxqihr0VjEqusTzQSXrIUcBesmipHIF6zjhzdTv/PIlOaxfMBJwryIjCQPOCVopPvOIBxUa07dmcH+S9yC1KBAc1D97g9jmkZMIhVE657rJOhlRCGnguWVfqpZQmhIRqxnqCQR0142OzW3T4wytINYmZJoz9TfExmJtJ5EvumMCI71sjcV//N6KQZXXsZlkiKTdL4oSIWNsT392x5yxSiKiSGEKm5utemYKELRpLOwBXn4lJtU3OUM/pL2Wd29qLt357XGdZFPGY7gGE7BhUtowC00oQUURvAML/Bq5dab9W59zFtLVjFzCAuwPn8AZXGVVA==</latexit>

Wk

<latexit sha1_base64="T4A6OtLaMXPh/wAePIfPgRe3EOk=">AAAB+3icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWNF+wFtKJvtpl262YTdSaGG/ASv+gO8iVd/jGf/iNs2B9v6YODx3gwz8/xYcI2O820V1tY3NreK26Wd3b39g/LhUVNHiaKsQSMRqbZPNBNcsgZyFKwdK0ZCX7CWP7qb+q0xU5pH8gknMfNCMpA84JSgkR5bvXGvXHGqzgz2KnFzUoEc9V75p9uPaBIyiVQQrTuuE6OXEoWcCpaVuolmMaEjMmAdQyUJmfbS2amZfWaUvh1EypREe6b+nUhJqPUk9E1nSHCol72p+J/XSTC48VIu4wSZpPNFQSJsjOzp33afK0ZRTAwhVHFzq02HRBGKJp2FLchHz5lJxV3OYJU0L6ruVdV9uKzUbvN8inACp3AOLlxDDe6hDg2gMIAXeIU3K7PerQ/rc95asPKZY1iA9fULdtiVXw==</latexit>

Wv

Attention

<latexit sha1_base64="ynYrZoEFmVM4uA6bhhbktDYidS0=">AAAB+3icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj0kmNE84BkCbOT2WTI7MOZXiEu+wle9QO8iVc/xrM/4iTZg0ksaCiquunu8mIpNNr2t7Wyura+sVnYKm7v7O7tlw4OmzpKFOMNFslItT2quRQhb6BAydux4jTwJG95o9uJ33riSosofMBxzN2ADkLhC0bRSPe13mOvVLYr9hRkmTg5KUOOeq/00+1HLAl4iExSrTuOHaObUoWCSZ4Vu4nmMWUjOuAdQ0MacO2m01MzcmqUPvEjZSpEMlX/TqQ00HoceKYzoDjUi95E/M/rJOhfu6kI4wR5yGaL/EQSjMjkb9IXijOUY0MoU8LcStiQKsrQpDO3BcXoOTOpOIsZLJPmecW5rDh3F+XqTZ5PAY7hBM7AgSuoQg3q0AAGA3iBV3izMuvd+rA+Z60rVj5zBHOwvn4BVxaVSw==</latexit>

Hq
<latexit sha1_base64="53/heAb1FrGqggxhpPrBzrKGG4Q=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLopssK9gFtKJPppB0zmYSZSaGGgp/gVj/Anbj1V1z7I07aLGzrgQuHc+7l3nu8mDOlbfvbKqytb2xuFbdLO7t7+wflw6OWihJJaJNEPJIdDyvKmaBNzTSnnVhSHHqctr3gLvPbYyoVi8SDnsTUDfFQMJ8RrI3UqvfTYDztlyt21Z4BrRInJxXI0eiXf3qDiCQhFZpwrFTXsWPtplhqRjidlnqJojEmAR7SrqECh1S56ezaKTozygD5kTQlNJqpfydSHCo1CT3TGWI9UsteJv7ndRPt37gpE3GiqSDzRX7CkY5Q9joaMEmJ5hNDMJHM3IrICEtMtAloYYtmwVOWirOcwSppXVSdq6pzf1mp3eb5FOEETuEcHLiGGtShAU0g8Agv8Apv1rP1bn1Yn/PWgpXPHMMCrK9fBG6W0Q==</latexit>

Hkv

<latexit sha1_base64="vDFN8nETgEARjOonpffBvKPUCu0=">AAACZHicjVFNS8NAEN3Gb61aFU+CLBbRg5RERD2KXnqsYluhacNmu7VrNpu4OynUkP/o1bPgT/Cqm5qDVg8OLLx58x4zvPVjwTXY9kvJmpmdm19YXFpeKa+urVc2Nls6ShRlTRqJSN35RDPBJWsCB8HuYsVI6AvW9oOrfN4eMaV5JG9hHLNuSO4lH3BKwFBe5aHdS4cHmffocondkMDQ99ObrJf2XeAh0zjMjvDQFewR143Ixbk+84KjAoz+40uDkem8StWu2ZPCv4FTgCoqquFVXt1+RJOQSaCCaN1x7Bi6KVHAqWDZsptoFhMakHvWMVASs7ebTjLJ8L5h+ngQKfMk4An73ZGSUOtx6Btlfr2enuXkX7NOAoPzbsplnACT9GvRIBEYIpwHjPtcMQpibAChiptbMR0SRSiYb/ixBXjwlJlUnOkMfoPWcc05rTnXJ9WLyyKfRbSD9tAhctAZukB11EBNRNEzekcfJVR6s8rWlrX9JbVKhWcL/Shr9xOQ9rqI</latexit>

W
h0

q 2 Rd⇥m
, h  Hq

W
h
k ,W

h
v 2 Rd⇥m

, h  Hkv,

Causal masks in Decoder-only
• The goal of a causality mask is to make training match inference: the

model should not use future tokens to predict the next token ("auto-
regressive" behaviour).

• A binary mask is applied to attention scores

• Position i can only attend to positions .

40

<latexit sha1_base64="WX7rBBwkF7IsrSpkhLBGqwA4NUU=">AAAB/nicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Rj04jGCeUASwuykNxkzO7vO9ApxCfgJXvUDvIlXf8WzP+Ik2YNJLGgoqrrp7vJjKQy67reztLyyurae28hvbm3v7Bb29msmSjSHKo9kpBs+MyCFgioKlNCINbDQl1D3B9djv/4I2ohI3eEwhnbIekoEgjO0Uq0l4YGKTqHoltwJ6CLxMlIkGSqdwk+rG/EkBIVcMmOanhtjO2UaBZcwyrcSAzHjA9aDpqWKhWDa6eTaET22SpcGkbalkE7UvxMpC40Zhr7tDBn2zbw3Fv/zmgkGl+1UqDhBUHy6KEgkxYiOX6ddoYGjHFrCuBb2Vsr7TDOONqCZLSgGTyObijefwSKpnZa885J3e1YsX2X55MghOSInxCMXpExuSIVUCSf35IW8kjfn2Xl3PpzPaeuSk80ckBk4X793npZ4</latexit> i

MLP layer
• Fix a pointwise non linearity: so that

• A successful strategy, used in Llama family models, is to "gate" the
activations and to slightly increase the dimensionality.

• Typically, m is an expansion factor that increases dimensionality
(expressiveness)

41

<latexit sha1_base64="TbCSfFSc62lcLsv0jB2tNO0IN2U=">AAACGXicbVDLSgMxFM3UV62vUZcuDBbBVZkRUXFVdOOyin1AZyiZNNOGJpkhyQh16NKv8BPc6ge4E7euXPsjZtoBbeuBwMk593LvPUHMqNKO82UVFhaXlleKq6W19Y3NLXt7p6GiRGJSxxGLZCtAijAqSF1TzUgrlgTxgJFmMLjK/OY9kYpG4k4PY+Jz1BM0pBhpI3XsfU/RHkcXHke6HwTp7cjTEfz9deyyU3HGgPPEzUkZ5Kh17G+vG+GEE6ExQ0q1XSfWfoqkppiRUclLFIkRHqAeaRsqECfKT8eHjOChUbowjKR5QsOx+rcjRVypIQ9MZbahmvUy8T+vnejw3E+piBNNBJ4MChMGza1ZKrBLJcGaDQ1BWFKzK8R9JBHWJrupKZoOHrJU3NkM5knjuOKeVtybk3L1Ms+nCPbAATgCLjgDVXANaqAOMHgEz+AFvFpP1pv1bn1MSgtW3rMLpmB9/gAgkKGq</latexit>

� : R ! R
<latexit sha1_base64="k2bZkM6Y+x8Ew2LTJpf0cbuVHFc=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoMQL2FXRL0IQS8eI5gHbJYwO5lNhszOLDOzQgw5+gle9QO8iVc/xLM/4iTZg0ksaCiquunuChPOtHHdbye3srq2vpHfLGxt7+zuFfcPGlqmitA6kVyqVog15UzQumGG01aiKI5DTpvh4HbiNx+p0kyKBzNMaBDjnmARI9hYyW9r1otx2T29djvFkltxp0DLxMtICTLUOsWfdleSNKbCEI619j03McEIK8MIp+NCO9U0wWSAe9S3VOCY6mA0PXmMTqzSRZFUtoRBU/XvxAjHWg/j0HbG2PT1ojcR//P81ERXwYiJJDVUkNmiKOXISDT5H3WZosTwoSWYKGZvRaSPFSbGpjS3xbDB09im4i1msEwaZxXvouLdn5eqN1k+eTiCYyiDB5dQhTuoQR0ISHiBV3hznp1358P5nLXmnGzmEObgfP0CJl+X3g==</latexit>

�(0) = 0

<latexit sha1_base64="ITL7ycWEzbqFrTIYdBQUQRTf/rw=">AAACF3icbVDLSsNAFJ34rPUVdSnCYBFclUREXRbduKxiH9DEMplO26GTSZi5EWrIyq/wE9zqB7gTty5d+yNO2i5s64GBwzn3cu6cIBZcg+N8WwuLS8srq4W14vrG5ta2vbNb11GiKKvRSESqGRDNBJesBhwEa8aKkTAQrBEMrnK/8cCU5pG8g2HM/JD0JO9ySsBIbfug0Y48LrEXEugHQXqb3aehBzxkGneytl1yys4IeJ64E1JCE1Tb9o/XiWgSMglUEK1brhODnxIFnAqWFb1Es5jQAemxlqGSmBw/HX0jw0dG6eBupMyTgEfq342UhFoPw8BM5tfqWS8X//NaCXQv/JTLOAEm6TiomwgMEc47wR2uGAUxNIRQxc2tmPaJIhRMc1MpwAePeSvubAfzpH5Sds/K7s1pqXI56aeA9tEhOkYuOkcVdI2qqIYoekIv6BW9Wc/Wu/VhfY5HF6zJzh6agvX1C17woLk=</latexit>

Wo 2 Rm⇥d

<latexit sha1_base64="QGSAMoGqydcy6tuenp8vs8toqY0=">AAACGHicbZDLSsNAFIYn9VbrLepSkGAR2k1JRNSNUHTjsoJtCk0Jk+mkHTrJxJkTaS3d+RQ+glt9AHfi1p1rX8TpZWFbfxj4+M85nDN/kHCmwLa/jczS8srqWnY9t7G5tb1j7u7VlEgloVUiuJD1ACvKWUyrwIDTeiIpjgJO3aB7Paq7D1QqJuI76Ce0GeF2zEJGMGjLNw/7l64vCp5i7QgXXP++V/RES4DGoFcs+mbeLtljWYvgTCGPpqr45o/XEiSNaAyEY6Uajp1Ac4AlMMLpMOeliiaYdHGbNjTGOKKqORj/Y2gda6dlhULqF4M1dv9ODHCkVD8KdGeEoaPmayPzv1ojhfCiOWBxkgKNyWRRmHILhDUKxWoxSQnwvgZMJNO3WqSDJSago5vZAqz7ONSpOPMZLELtpOSclZzb03z5appPFh2gI1RADjpHZXSDKqiKCHpCL+gVvRnPxrvxYXxOWjPGdGYfzcj4+gUzS5/u</latexit>

y = Wo(�(Wqx)� (Wbx))

<latexit sha1_base64="aYiyy55UVi8lwVuD7Q+uh3Io0yM=">AAACG3icbVC7TsMwFHV4lvIqMLIYKiQGVCUIAWMFC2NB9CE1JXJct7XqOMG+QSpRZr6CT2CFD2BDrAzM/AhO24G2HMnS0Tn36lwfPxJcg21/W3PzC4tLy7mV/Ora+sZmYWu7psNYUValoQhVwyeaCS5ZFTgI1ogUI4EvWN3vX2Z+/YEpzUN5C4OItQLSlbzDKQEjeYW9uucf1b17l0vsBgR6vp/cpHdJ2wUeMI2D1CsU7ZI9BJ4lzpgU0RgVr/DjtkMaB0wCFUTrpmNH0EqIAk4FS/NurFlEaJ90WdNQSUxOKxl+JcUHRmnjTqjMk4CH6t+NhARaDwLfTGbX6mkvE//zmjF0zlsJl1EMTNJRUCcWGEKc9YLbXDEKYmAIoYqbWzHtEUUomPYmUoD3H7NWnOkOZkntuOSclpzrk2L5YtxPDu2ifXSIHHSGyugKVVAVUfSEXtArerOerXfrw/ocjc5Z450dNAHr6xce3KIn</latexit>

Wb,Wq 2 Rd⇥m and

so that

RMS norm
• Root Mean Square norm is defined as a normalisation used between

layers, with a learnable parameter and .

• RMS norm is much more amenable to parallelisation than a batch
norm!! (no cross-communications between samples)

• Two strategies (post-norm seems to take the lead)

42

<latexit sha1_base64="fqFwnIc6o3pj2IoD85feJ/3HipA=">AAACZXicbVHLbhMxFPVMeZRAIVDEhgUWEVIRVTRTIeimUgUbNqDySFspTkcex5Na8WOw71RJLX8kS9Ys+AS2eNJZ0JYrWTr3nHN17eOylsJBlv1M0rUbN2/dXr/Tu3tv4/6D/sNHh840lvERM9LY45I6LoXmIxAg+XFtOVWl5Efl/H2rH51x64TR32BZ84miMy0qwShEqujPiam5pWCspor7Lx+/fjJWha3Fyx7Ge3iBiZkawKSylHkyo0rR4In7bsGTM2p57YQ0Gr/qHHnwOmDiGlV4sZeHk7ZdFOJkJ4Ttoj/Ihtmq8HWQd2CAujoo+r/I1LBGcQ1MUufGeVbDxFMLgkkeeqRxvKZsTmd8HGH7Ajfxq1ACfhGZKa6MjUcDXrH/TniqnFuqMjoVhVN3VWvJ/2njBqrdiRe6boBrdrGoaiQGg9uE8VRYzkAuI6DMinhXzE5pTAfiP1zaAmJ+HmIq+dUMroPDnWH+Zph/fj3Yf9fls46eoudoC+XoLdpHH9ABGiGGfqA/CUqS5He6kT5On1xY06Sb2USXKn32FxgMung=</latexit>

RMSNorm(x) = x� �q
"+ 1

n

Pn
i=1 x

2
i

,

<latexit sha1_base64="dc/HWbHaWOwGpnyRVJyP8/Vt0Vk=">AAACEXicbVC7TsMwFHXKq5RXgIGBxaJCYqoShICxgoWxIPqQmlA5jtNatZ3IdpBKlK/gE1jhA9gQK1/AzI/gtB1oy5GudHTOvbr3niBhVGnH+bZKS8srq2vl9crG5tb2jr2711JxKjFp4pjFshMgRRgVpKmpZqSTSIJ4wEg7GF4XfvuRSEVjca9HCfE56gsaUYy0kXr2gddHnCPoUQE9jvQgCLK7/CHs2VWn5owBF4k7JVUwRaNn/3hhjFNOhMYMKdV1nUT7GZKaYkbyipcqkiA8RH3SNVQgTpSfjR/I4bFRQhjF0pTQcKz+ncgQV2rEA9NZ3KjmvUL8z+umOrr0MyqSVBOBJ4uilEEdwyINGFJJsGYjQxCW1NwK8QBJhLXJbGaLpsOn3KTizmewSFqnNfe85t6eVetX03zK4BAcgRPgggtQBzegAZoAgxy8gFfwZj1b79aH9TlpLVnTmX0wA+vrFwpzndQ=</latexit>

� 2 Rd <latexit sha1_base64="tvfCj7Wes+eOjrvHwHRrFjD8XMc=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqCcJevEYwTwwWcLspJMMmZ1dZmaFuOTmJ3jVD/AmXv0Rz/6Ik2QPJlrQUFR1090VxIJr47pfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNB1SaR/LOjGL0Q9qXvMcZNVa6b2OsuYjkpdspltyyOwX5S7yMlCBDtVP8bncjloQoDRNU65bnxsZPqTKcCRwX2onGmLIh7WPLUklD1H46vXhMjqzSJb1I2ZKGTNXfEykNtR6Fge0MqRnoRW8i/ue1EtO78FMu48SgZLNFvUQQE5HJ+6TLFTIjRpZQpri9lbABVZQZG9LcFsOHj2ObireYwV9SPyl7Z2Xv9rRUucryycMBHMIxeHAOFbiBKtSAgYRneIFX58l5c96dj1lrzslm9mEOzucPpdGYPQ==</latexit>

✏ > 0

Post-norm Pre-norm

Forward: the "2P" rules

• Let’s provide a simple heuristic to quickly know the number of
FLOPs of a model with P parameters, per token.

• Typically, the context length L is much smaller than the
ambient dimension d.

• Thus the FLOPs are mostly due to the linear layers rather
than the attention.

• If we neglect also the FLOPs due to the RMS, we end up with

43

<latexit sha1_base64="i/O2ufnufo+1x27NpVwxuN1qkdU=">AAACFnicbVDLSsNAFJ34flt1qYtgEVzVpIi6EYqCuBCsYFVoQ5lMb+qQySTM3Ig1ZONX+Alu9QPciVu3rv0Rp4+Fth4YOHPOudyZ4yeCa3ScL2tsfGJyanpmdm5+YXFpubCyeqXjVDGosVjE6sanGgSXUEOOAm4SBTTyBVz74XHXv74DpXksL7GTgBfRtuQBZxSN1CxsNBDuMTs5O6/qfKd/wTgEmR+Wq81C0Sk5PdijxB2QIhnA5L8brZilEUhkgmpdd50EvYwq5ExAPtdINSSUhbQNdUMljUB7We8Xub1llJYdxMociXZP/T2R0UjrTuSbZETxVg97XfE/r55icOBlXCYpgmT9RUEqbIztbiV2iytgKDqGUKa4eavNbqmiDE1xf7YgDx9y04o73MEouSqX3L2Se7FbrBwN+pkh62STbBOX7JMKOSVVUiOMPJJn8kJerSfrzXq3PvrRMWsws0b+wPr8AYhEoEM=</latexit>

FLOPs/token = 2P

What about the backward?

Complexity of the backward pass of a linear layer

• What is the fully complexity of a GEMM (General Matrix Multiply)?

44

• Let:

The total complexity if then
<latexit sha1_base64="NJ+j9yIVbrSb8cfcEW4PADyZKQA=">AAAB+3icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8eK9gPaUDabTbt0swm7E6GW/ASv+gO8iVd/jGf/iNs2B9v6YODx3gwz8/xEcI2O820V1tY3NreK26Wd3b39g/LhUUvHqaKsSWMRq45PNBNcsiZyFKyTKEYiX7C2P7qd+u0npjSP5SOOE+ZFZCB5yClBIz3UZNAvV5yqM4O9StycVCBHo1/+6QUxTSMmkQqiddd1EvQmRCGngmWlXqpZQuiIDFjXUEkipr3J7NTMPjNKYIexMiXRnql/JyYk0noc+aYzIjjUy95U/M/rphheexMukxSZpPNFYSpsjO3p33bAFaMoxoYQqri51aZDoghFk87CFuSj58yk4i5nsEpaF1W3VnXvLyv1mzyfIpzAKZyDC1dQhztoQBMoDOAFXuHNyqx368P6nLcWrHzmGBZgff0CPbGVOw==</latexit>

6nd

<latexit sha1_base64="PdfDdDJveZ7+TgHfr9NEQ0OHp1U=">AAACDXicbVDLSsNAFJ34rPUV7dLNYBFclUREXRbduKxiH9DEMplM2qGTSZiZiDHkG/wEt/oB7sSt3+DaH3HSZmFbD1w4nHMv93C8mFGpLOvbWFpeWV1br2xUN7e2d3bNvf2OjBKBSRtHLBI9D0nCKCdtRRUjvVgQFHqMdL3xVeF3H4iQNOJ3Ko2JG6IhpwHFSGlpYNYeHcqhEyI18rzsNr/P/Hxg1q2GNQFcJHZJ6qBEa2D+OH6Ek5BwhRmSsm9bsXIzJBTFjORVJ5EkRniMhqSvKUchkW42CZ/DI634MIiEHq7gRP17kaFQyjT09GaRUs57hfif109UcOFmlMeJIhxPHwUJgyqCRRPQp4JgxVJNEBZUZ4V4hATCSvc180XR8VPRij3fwSLpnDTss4Z9c1pvXpb9VMABOATHwAbnoAmuQQu0AQYpeAGv4M14Nt6ND+NzurpklDc1MAPj6xet0pyd</latexit>

x 2 Rd
<latexit sha1_base64="hFTvnJOg1kg/10HyeZP1LhSPO6w=">AAACFXicbVC7TsMwFHXKq5RXgbGLRYXEVCUIAWOBhbEg+pCaUDmO21p1nMi+QSpRB76CT2CFD2BDrMzM/AhO24G2HMnS0Tn36lwfPxZcg21/W7ml5ZXVtfx6YWNza3unuLvX0FGiKKvTSESq5RPNBJesDhwEa8WKkdAXrOkPrjK/+cCU5pG8g2HMvJD0JO9ySsBInWLpwuUSuyGBvu+nt6P7VLrAQ6ZxMOoUy3bFHgMvEmdKymiKWqf44wYRTUImgQqidduxY/BSooBTwUYFN9EsJnRAeqxtqCQmx0vHnxjhQ6MEuBsp8yTgsfp3IyWh1sPQN5PZtXrey8T/vHYC3XMv5TJOgEk6CeomAkOEs0ZwwBWjIIaGEKq4uRXTPlGEgultJgX44DFrxZnvYJE0jivOacW5OSlXL6f95FEJHaAj5KAzVEXXqIbqiKIn9IJe0Zv1bL1bH9bnZDRnTXf20Qysr1+U9Z/C</latexit>

A 2 Rn⇥d
<latexit sha1_base64="ZWBXkVX+G73fclyAZ0X92hxN5Vc=">AAACGXicbVDLSsNAFL3xWesr6tKFwSK4KomIiquiG5dV7AOaWCbTSTt0MgkzE6GGLv0KP8GtfoA7cevKtT/ipA1oWw8MnDnnXu69x48Zlcq2v4y5+YXFpeXCSnF1bX1j09zarssoEZjUcMQi0fSRJIxyUlNUMdKMBUGhz0jD719mfuOeCEkjfqsGMfFC1OU0oBgpLbXNPZcwdu6GSPV8P70Z3nFXRdbvv22W7LI9gjVLnJyUIEe1bX67nQgnIeEKMyRly7Fj5aVIKIoZGRbdRJIY4T7qkpamHIVEeunokKF1oJWOFURCP66skfq3I0WhlIPQ15XZhnLay8T/vFaigjMvpTxOFOF4PChImKVvzVKxOlQQrNhAE4QF1btauIcEwkpnNzFF0f5DloozncEsqR+VnZOyc31cqlzk+RRgF/bhEBw4hQpcQRVqgOERnuEFXo0n4814Nz7GpXNG3rMDEzA+fwASxKGi</latexit>

` : Rn ! R
<latexit sha1_base64="3VizBJI8DQcPsEMHt35IEg9FqXc=">AAACCXicbVBLSgNBFHzjN8ZPRl26aQxCAhJmRNSNkOjGZQTzgWQIPZ2epEnPh+4eSRxyAo/gVg/gTtx6CtdexE4yC5NY8KCoeo96lBtxJpVlfRsrq2vrG5uZrez2zu5eztw/qMswFoTWSMhD0XSxpJwFtKaY4rQZCYp9l9OGO7id+I1HKiQLgwc1iqjj417APEaw0lLHzHmF4WmleN2mnBcqw2LHzFslawq0TOyU5CFFtWP+tLshiX0aKMKxlC3bipSTYKEY4XScbceSRpgMcI+2NA2wT6WTTB8foxOtdJEXCj2BQlP170WCfSlHvqs3faz6ctGbiP95rVh5V07CgihWNCCzIC/mSIVo0gLqMkGJ4iNNMBFM/4pIHwtMlO5qLkWxwdNYt2IvdrBM6mcl+6Jk35/nyzdpPxk4gmMogA2XUIY7qEINCMTwAq/wZjwb78aH8TlbXTHSm0OYg/H1CwjqmVg=</latexit>

f(x,A) = `(Ax)
<latexit sha1_base64="hYJe+4BA1XQyRhSFb8SJgPfqeZ4=">AAACG3icbVC7TsMwFHV4lvIKMLIYKqSyVAlCwFhgYSyIPqQmVI7rtFYdJ7IdRIky8xV8Ait8ABtiZWDmR3DaDLTlSFc6Oude3XuPFzEqlWV9G3PzC4tLy4WV4ura+samubXdkGEsMKnjkIWi5SFJGOWkrqhipBUJggKPkaY3uMz85j0Rkob8Vg0j4gaox6lPMVJa6ph7DkceQ9AhjJXPHw4dyqETINX3vOQmvUt42jFLVsUaAc4SOyclkKPWMX+cbojjgHCFGZKybVuRchMkFMWMpEUnliRCeIB6pK0pRwGRbjJ6JYUHWulCPxS6uIIj9e9EggIph4GnO7Mr5bSXif957Vj5Z25CeRQrwvF4kR8zqEKY5QK7VBCs2FAThAXVt0LcRwJhpdOb2KLo4DFLxZ7OYJY0jir2ScW+Pi5VL/J8CmAX7IMysMEpqIIrUAN1gMETeAGv4M14Nt6ND+Nz3Dpn5DM7YALG1y+azqHY</latexit>

r`(Ax) 2 Rn

and,

Fix so that

Forward:
<latexit sha1_base64="Iql+vPrdyDE7aS0U4knODGYvC58=">AAAB+3icbVBNS8NAEJ3Ur1q/qh69BIvgqSRF1GPRi8eK9gPaUDabTbt0swm7E6GW/ASv+gO8iVd/jGf/iNs2B9v6YODx3gwz8/xEcI2O820V1tY3NreK26Wd3b39g/LhUUvHqaKsSWMRq45PNBNcsiZyFKyTKEYiX7C2P7qd+u0npjSP5SOOE+ZFZCB5yClBIz3UZNAvV5yqM4O9StycVCBHo1/+6QUxTSMmkQqiddd1EvQmRCGngmWlXqpZQuiIDFjXUEkipr3J7NTMPjNKYIexMiXRnql/JyYk0noc+aYzIjjUy95U/M/rphheexMukxSZpPNFYSpsjO3p33bAFaMoxoYQqri51aZDoghFk87CFuSj58yk4i5nsEpatap7WXXvLyr1mzyfIpzAKZyDC1dQhztoQBMoDOAFXuHNyqx368P6nLcWrHzmGBZgff0CN1WVNw==</latexit>

2nd
<latexit sha1_base64="3VizBJI8DQcPsEMHt35IEg9FqXc=">AAACCXicbVBLSgNBFHzjN8ZPRl26aQxCAhJmRNSNkOjGZQTzgWQIPZ2epEnPh+4eSRxyAo/gVg/gTtx6CtdexE4yC5NY8KCoeo96lBtxJpVlfRsrq2vrG5uZrez2zu5eztw/qMswFoTWSMhD0XSxpJwFtKaY4rQZCYp9l9OGO7id+I1HKiQLgwc1iqjj417APEaw0lLHzHmF4WmleN2mnBcqw2LHzFslawq0TOyU5CFFtWP+tLshiX0aKMKxlC3bipSTYKEY4XScbceSRpgMcI+2NA2wT6WTTB8foxOtdJEXCj2BQlP170WCfSlHvqs3faz6ctGbiP95rVh5V07CgihWNCCzIC/mSIVo0gLqMkGJ4iNNMBFM/4pIHwtMlO5qLkWxwdNYt2IvdrBM6mcl+6Jk35/nyzdpPxk4gmMogA2XUIY7qEINCMTwAq/wZjwb78aH8TlbXTHSm0OYg/H1CwjqmVg=</latexit>

f(x,A) = `(Ax)

Backward of the weights:
<latexit sha1_base64="8k7CgruUM1pEtbAWx6lb31DKnaE=">AAACT3icbVBNSyNBFOzJuqtmP8zq0UtjEBIIYUZEF2TB6MWjilEhHUN3pyc26ekZut8sicP8sv0VHj2KN/0B3sSeOAe/ChqKqtfUe8USJS34/o1X+TL39dv8wmL1+4+fv5Zqv5dPbZwaLro8VrE5Z9QKJbXoggQlzhMjaMSUOGPj/cI/+yeMlbE+gWki+hEdaRlKTsFJg1qXaMoUHXRw2Ji0Ok1Mdv6SHUyYHDVeLEyEUo3OpFloTdLCkwsCcYKJ1JhEFC4Zy47zi0wTkJGweJi3qoNa3W/7M+CPJChJHZU4HNTuyDDmaSQ0cEWt7QV+Av2MGpBcibxKUisSysd0JHqOauqS+tns/ByvO2WIw9i4pwHP1Nc/MhpZO42Ymyz2te+9QvzM66UQ/ulnUicpCM1fgsJUYYhx0SUeSiM4qKkjlBvpdsX8khrKwTX+JgXk+Cp3rQTvO/hITjfawVY7ONqs7+6V/SygVbSGGihA22gXHaBD1EUc/Ue36B49eNfeo/dUKUcrXklW0BtUFp8BuZ2yNQ==</latexit>

rAf(x,A) =
�
r`(Ax)

�
x> 2 Rn⇥d,

<latexit sha1_base64="Iql+vPrdyDE7aS0U4knODGYvC58=">AAAB+3icbVBNS8NAEJ3Ur1q/qh69BIvgqSRF1GPRi8eK9gPaUDabTbt0swm7E6GW/ASv+gO8iVd/jGf/iNs2B9v6YODx3gwz8/xEcI2O820V1tY3NreK26Wd3b39g/LhUUvHqaKsSWMRq45PNBNcsiZyFKyTKEYiX7C2P7qd+u0npjSP5SOOE+ZFZCB5yClBIz3UZNAvV5yqM4O9StycVCBHo1/+6QUxTSMmkQqiddd1EvQmRCGngmWlXqpZQuiIDFjXUEkipr3J7NTMPjNKYIexMiXRnql/JyYk0noc+aYzIjjUy95U/M/rphheexMukxSZpPNFYSpsjO3p33bAFaMoxoYQqri51aZDoghFk87CFuSj58yk4i5nsEpatap7WXXvLyr1mzyfIpzAKZyDC1dQhztoQBMoDOAFXuHNyqx368P6nLcWrHzmGBZgff0CN1WVNw==</latexit>

2nd

Backward of the inputs:
<latexit sha1_base64="QdJCTztNVoYDeli28Yk2f2SCruA=">AAACQnicbVBNaxsxFNQmbZO6X25yzEXUFGwoZjeUNmACdnLJ0S31B1i2kWStI6zVLtLbYmfxX8qvyE/opYfk0ltuodceqrV9iO0MCIaZebynYYmSFnz/t7ez++z5i739l4VXr9+8fVd8f9C2cWq4aPFYxabLqBVKatECCUp0EyNoxJTosMl57nd+CmNlrH/ALBH9iI61DCWn4KRh8YJoyhQdTnFYnn5qVDCpnZIabgwIxAkmTI7LywQmQqlyY1rJNReTGpOIwiVj2ff5YFQdFkt+1V8Ab5NgRUpoheaw+IeMYp5GQgNX1Npe4CfQz6gByZWYF0hqRUL5hI5Fz1FNI2H72eLHc/zRKSMcxsY9DXihPp7IaGTtLGIumR9pN71cfMrrpRCe9DOpkxSE5stFYaowxDivD4+kERzUzBHKjXS3Yn5JDeXgSl7bAnJyNXetBJsdbJP2cTX4Ug2+fS7Vz1b97KMj9AGVUYC+ojq6QE3UQhxdo1/oFt15N9699+D9XUZ3vNXMIVqD9+8/a22vHQ==</latexit>

rxf(x,A) = A>�r`(Ax)
�
2 Rd.

<latexit sha1_base64="Iql+vPrdyDE7aS0U4knODGYvC58=">AAAB+3icbVBNS8NAEJ3Ur1q/qh69BIvgqSRF1GPRi8eK9gPaUDabTbt0swm7E6GW/ASv+gO8iVd/jGf/iNs2B9v6YODx3gwz8/xEcI2O820V1tY3NreK26Wd3b39g/LhUUvHqaKsSWMRq45PNBNcsiZyFKyTKEYiX7C2P7qd+u0npjSP5SOOE+ZFZCB5yClBIz3UZNAvV5yqM4O9StycVCBHo1/+6QUxTSMmkQqiddd1EvQmRCGngmWlXqpZQuiIDFjXUEkipr3J7NTMPjNKYIexMiXRnql/JyYk0noc+aYzIjjUy95U/M/rphheexMukxSZpPNFYSpsjO3p33bAFaMoxoYQqri51aZDoghFk87CFuSj58yk4i5nsEpatap7WXXvLyr1mzyfIpzAKZyDC1dQhztoQBMoDOAFXuHNyqx368P6nLcWrHzmGBZgff0CN1WVNw==</latexit>

2nd (it’s aggregated over a mini batch)

Backward in Transformers

• Consequently, as for the forward pass, the methodology to
have an approximation of the number of flops lead to 6P
FLOPs per token for the backward pass.

• Note that some methodology do not take in account the
embedding layer, or use the exact number of FLOPs including
the context length.

45

<latexit sha1_base64="9bKbitJMHPTotqL1M0513ExWNHA=">AAADA3icnZLNahsxEMe124847peTHnMRNS2FFrNripNLIKSXXFpSqJOA11202nEirJU20myIu+iYR8g1eYDeSq99kJ77IpUdB/J1aDsg+POb/2jEjLJSCotR9CsI791/8HChsdh89PjJ02etpeUdqyvDoc+11GYvYxakUNBHgRL2SgOsyCTsZuP30/zuERgrtPqMkxKGBdtXYiQ4Q4/SpaDR+5jG9NU6Xe0mb6lK6wThGGvJJmCc8yi/RIXOQTr3pe46miRNX9f957o3tHfVfaQ5y+50Tzt8+I/r47+0eyQvkYVD55ppqx11olnQ2yKeizaZx3ba+p3kmlcFKOSSWTuIoxKHNTMouATXTCoLJeNjtg8DLxUrwA7r2cocfelJTkfa+KOQzujVipoV1k6KzDsLhgf2Zm4K78oNKhytDWuhygpB8YtGo0pS1HS6f5oLAxzlxAvGjfBvpfyAGcbR/5JrXVCMvzo/lfjmDG6LnW4n7nXiT+/aG5vz+TTICnlBXpOYrJINskW2SZ/wQAenwVlwHp6E38Lv4Y8LaxjMa56TaxH+/ANpafTE</latexit>

6N1 = 72nlayer d
2
model

6N2 = 72nlayer d
2
model + 6nvocab dmodel

M = 72nlayer d
2
model + 12nlayer dmodel lseq

Non embedding parameter

Total parameters

"non-embedding FLOPs per token"

Ref.: DeepSeek LLM Scaling Open-Source
Language Models with Longtermism

Full Anatomy of a Decoder-Only Transformer 46

Training Recipes

47

Cross-validation is costly

• On small-scale tasks like CIFAR-10, we can cross-validate most
hyper-parameters and run many experiments on a short time
windows

• For training LLMs, the situation is very different: full cross-
validation is computationally impossible and each run is
extremely expensive (many GPUs, long training time)

• We must rely on heuristics to predict good hyperparameters
within a limited and affordable compute budget.

48

Core ingredients to train a LLM

• We’ve chosen the architecture type and describe the data, what’s left?

• Which optimizer?

• Which learning-rate schedule?

• For how many tokens/steps?

• How should we initialise the weights?

• Let’s come back to the initial training loop.

49

The training Loop 50

• Let’s unroll one optimizer step to make each operation explicit:

m: the magnitude of clipping
: weight decay (regularisation) : learning rate<latexit sha1_base64="FCUmYV57LTDeYXfzVYB9JhJgrsc=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVRIRdVl047KCbYU2lMlk0g6ZTMLMjVBDF36CW/0Ad+LWT3Htjzhts7CtBwYO55zLvXP8VHCNjvNtlVZW19Y3ypuVre2d3b3q/kFbJ5mirEUTkagHn2gmuGQt5CjYQ6oYiX3BOn50M/E7j0xpnsh7HKXMi8lA8pBTgkbq9ISJBqRfrTl1Zwp7mbgFqUGBZr/60wsSmsVMIhVE667rpOjlRCGngo0rvUyzlNCIDFjXUElipr18eu7YPjFKYIeJMk+iPVX/TuQk1noU+yYZExzqRW8i/ud1MwyvvJzLNEMm6WxRmAkbE3vydzvgilEUI0MIVdzcatMhUYSiaWhuC/LoaWxacRc7WCbts7p7UXfvzmuN66KfMhzBMZyCC5fQgFtoQgsoRPACr/BmPVvv1of1OYuWrGLmEOZgff0CjISXGA==</latexit>

�
<latexit sha1_base64="qzwRmEHKEmImc+KdztElM69vxsI=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxs7PLTK8QQ8BP8Kof4E28+iue/REnyR5MYkFDUdVNd1eQSGHQdb+d3Mrq2vpGfrOwtb2zu1fcP6ibONUcajyWsW4GzIAUCmooUEIz0cCiQEIjGNxM/MYjaCNidY/DBPyI9ZQIBWdopXobkHWwUyy5ZXcKuky8jJRIhmqn+NPuxjyNQCGXzJiW5yboj5hGwSWMC+3UQML4gPWgZaliERh/NL12TE+s0qVhrG0ppFP178SIRcYMo8B2Rgz7ZtGbiP95rRTDK38kVJIiKD5bFKaSYkwnr9Ou0MBRDi1hXAt7K+V9phlHG9DcFhSDp7FNxVvMYJnUz8reRdm7Oy9VrrN88uSIHJNT4pFLUiG3pEpqhJMH8kJeyZvz7Lw7H87nrDXnZDOHZA7O1y/gOJa6</latexit>⌘t

: AdamW parameters
<latexit sha1_base64="k37FAINIRLHZ8+7v7gKzo1jREJA=">AAACFHicbZDLSgMxFIYz9VbrrepON8EiuJAyU0RdFt24rGAv0JaSSU/b0ExmSM4ItRR8Ch/BrT6AO3Hr3rUvYtqOYFt/CHz85xzOye9HUhh03S8ntbS8srqWXs9sbG5t72R39yomjDWHMg9lqGs+MyCFgjIKlFCLNLDAl1D1+9fjevUetBGhusNBBM2AdZXoCM7QWq3sQQMiI2SoTmnDB2Qt7xcKrWzOzbsT0UXwEsiRRKVW9rvRDnkcgEIumTF1z42wOWQaBZcwyjRiAxHjfdaFukXFAjDN4eQPI3psnTbthNo+hXTi/p0YssCYQeDbzoBhz8zXxuZ/tXqMncvmUKgoRlB8uqgTS4ohHQdC20IDRzmwwLgW9lbKe0wzjja2mS0o+g8jm4o3n8EiVAp57zzv3Z7lildJPmlySI7ICfHIBSmSG1IiZcLJI3kmL+TVeXLenHfnY9qacpKZfTIj5/MHHLGeSQ==</latexit>

✏,�1,�2

: initialisation rules

n : batch size

<latexit sha1_base64="bb5nA7aV/BwUlQnvKHWb//+6pmM=">AAACAHicbVDLSgNBEOyNrxhfUY9eFoPgKeyKqMegBz1GMA9IljA7mU2GzMwuM71CDLn4CV71A7yJV//Esz/iJNmDSSxoKKq66e4KE8ENet63k1tZXVvfyG8WtrZ3dveK+wd1E6eashqNRaybITFMcMVqyFGwZqIZkaFgjXBwM/Ebj0wbHqsHHCYskKSneMQpQSs127dEStLxOsWSV/amcJeJn5ESZKh2ij/tbkxTyRRSQYxp+V6CwYho5FSwcaGdGpYQOiA91rJUEclMMJreO3ZPrNJ1o1jbUuhO1b8TIyKNGcrQdkqCfbPoTcT/vFaK0VUw4ipJkSk6WxSlwsXYnTzvdrlmFMXQEkI1t7e6tE80oWgjmtuCfPA0tqn4ixksk/pZ2b8o+/fnpcp1lk8ejuAYTsGHS6jAHVShBhQEvMArvDnPzrvz4XzOWnNONnMIc3C+fgHOYpcz</latexit>

�0

Explicit regularisation: Implicit regularisation:

Optimizer hyper parameters: T : maximal step

m
os

tl
y

fix
ed

ex
tr

ap
ol

at
io

n/

cr
os

s-
va

lid
at

io
n

List of the remaining hyper-parameters:

<latexit sha1_base64="VSfVEpp2H3MKPZCm75yQMReKN9A=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4jmAcka5idzCZjZh/M9ApxCfgJXvUDvIlXf8WzP+Ik2YNJLGgoqrrp7vJiKTTa9reVW1ldW9/Ibxa2tnd294r7Bw0dJYrxOotkpFoe1VyKkNdRoOStWHEaeJI3veH1xG8+cqVFFN7hKOZuQPuh8AWjaKRGh0t5X+kWS3bZnoIsEycjJchQ6xZ/Or2IJQEPkUmqdduxY3RTqlAwyceFTqJ5TNmQ9nnb0JAGXLvp9NoxOTFKj/iRMhUimap/J1IaaD0KPNMZUBzoRW8i/ue1E/Qv3VSEcYI8ZLNFfiIJRmTyOukJxRnKkSGUKWFuJWxAFWVoAprbgmL4NDapOIsZLJNGpeycl53bs1L1KssnD0dwDKfgwAVU4QZqUAcGD/ACr/BmPVvv1of1OWvNWdnMIczB+voFevWWeg==</latexit>

`2

for t=1…T
sample , on worker i:

initialise layers

<latexit sha1_base64="RBez6YuPAuiqkBEeUEBxXBpYBvI=">AAACWXicbVBNT9tAEN0YStO0pQGOvVhESFS1IhtVhQsSLZceqUQIUhxZ4/UkWWW9tnbHiGD55/Ejqh577BXurBMf+BppNE/vzZdenEthyPf/tJy19Tcbb9vvOu8/fNz81N3avjBZoTkOeCYzfRmDQSkUDkiQxMtcI6SxxGE8P6314RVqIzJ1ToscxylMlZgIDmSpqBuFNEOCqKSvQeWZVT0OCa+JqPyRQDqsojKsW8gLpV2cgBdiboTMlBfGtRA09aDab7aRN7VpIvoSdXt+31+G+xIEDeixJs6i7r8wyXiRoiIuwZhR4Oc0LkGT4BKrTlgYzIHPYYojCxWkaMbl0ojK3bNM4k4ybVORu2QfT5SQGrNIY9uZAs3Mc60mX9NGBU2OxqVQeUGo+OrQpJAuZW7tqpsIjZzkwgLgWthfXT4DDZys90+ukJjfVNaV4LkHL8HFQT/43g9+f+ud/Gz8abPPbJfts4AdshP2i52xAePslv1nd+y+9ddpOW2ns2p1Ws3MDnsSzs4DwrW3aQ==</latexit>

✓t+1, st+1 = AdamW⌘t,�,✏,�1,�2(✓t, gt, st)

<latexit sha1_base64="BeQIjwuU1AaAEI7r2P5bQ8ZFLCM=">AAACD3icbVDLSsNAFJ34rPUVFVduBovgqiQi6rLoQpcV7AOaECbTSTt0JgkzN0IN/Qg/wa1+gDtx6ye49kectlnY1gMXzj3nXu7lhKngGhzn21paXlldWy9tlDe3tnd27b39pk4yRVmDJiJR7ZBoJnjMGsBBsHaqGJGhYK1wcDP2W49MaZ7EDzBMmS9JL+YRpwSMFNiHHvQZkMDxNJfYuyVSmiawK07VmQAvErcgFVSgHtg/XjehmWQxUEG07rhOCn5OFHAq2KjsZZqlhA5Ij3UMjYlk2s8n74/wiVG6OEqUqRjwRP27kROp9VCGZlIS6Ot5byz+53UyiK78nMdpBiym00NRJjAkeJwF7nLFKIihIYQqbn7FtE8UoWASm7kCfPA0Mqm48xkskuZZ1b2ouvfnldp1kU8JHaFjdIpcdIlq6A7VUQNRlKMX9IrerGfr3fqwPqejS1axc4BmYH39Av0JnKw=</latexit>

✓0 ⇠ �0

<latexit sha1_base64="54UQRnkJs/aI8iMVjEPcedNek+A=">AAACC3icbVDLSsNAFJ3UV62vVJduBovgqiQi6rLoxmUF+4AmDZPppB06eTBzo9bQT/AT3OoHuBO3foRrf8Rpm4VtPXDhcM69nMvxE8EVWNa3UVhZXVvfKG6WtrZ3dvfM8n5TxamkrEFjEcu2TxQTPGIN4CBYO5GMhL5gLX94PfFb90wqHkd3MEqYG5J+xANOCWjJM8vOI/egyx3FQ+y0eZd7ZsWqWlPgZWLnpIJy1D3zx+nFNA1ZBFQQpTq2lYCbEQmcCjYuOaliCaFD0mcdTSMSMuVm09fH+FgrPRzEUk8EeKr+vchIqNQo9PVmSGCgFr2J+J/XSSG4dDMeJSmwiM6CglRgiPGkB9zjklEQI00IlVz/iumASEJBtzWXAnz4NNat2IsdLJPmadU+r9q3Z5XaVd5PER2iI3SCbHSBaugG1VEDUfSAXtArejOejXfjw/icrRaM/OYAzcH4+gWaIJtw</latexit>

⇠it ⇠ ⌅i
<latexit sha1_base64="H/ku9vRqICXLMdOFtWhDsE8oMoU=">AAACQHicbZDBShxBEIZ7jEZjNK7xmEvjElhBlpkQ1IsgEUKOBrIq7KxDTW/NbrPdPUN3jbgO80Z5Ch/BWzA3L97Ea07pXfcQNT80/PxVRVV/aaGkozD8Fcy9ml94vbj0Zvntyuq7tcb6+2OXl1ZgR+Qqt6cpOFTSYIckKTwtLIJOFZ6ko8NJ/eQcrZO5+UHjAnsaBkZmUgD5KGl8HSS0HxNeEFF1qGRRJ7oVZxZEFdWVqWNX6qSS+1F9ZmIDqQKetWIaIkFC2/GFPJMJbW0ljWbYDqfiL000M00201HSuI37uSg1GhIKnOtGYUG9CixJobBejkuHBYgRDLDrrQGNrldN/1vzjz7p8yy3/hni0/TfiQq0c2Od+k4NNHTPa5Pwf7VuSdler5KmKAmNeFyUlYpTzifweF9aFKTG3oCw0t/KxRA8LPKIn2whObqsPZXoOYOX5vhTO9ppR98/Nw++zPgssQ9sk7VYxHbZAfvGjliHCfaTXbMb9ju4Cu6C++DhsXUumM1ssCcK/vwF9ICxyg==</latexit>

gt = Clipm(
1

n

nX

i=1

rf(✓t, ⇠
i
t))

AdamW vs Adam 51

<latexit sha1_base64="zGz1tGD0eTD71hZKpXBSZQvOhHA=">AAACtXicbZFdS9xAFIYn6Yd2++HaXvZm6tJiKS6ZINobQfRCL1dwVUhimMxO3GFnkjBzEtiG/DJ/Sa/9I85mI+yqBwIv73nOOeGdpJDCgOf9d9w3b9+939j80Pv46fOXrf721yuTl5rxMctlrm8SargUGR+DAMlvCs2pSiS/Tmani/51xbUReXYJ84JHit5lIhWMgrXi/r2KAf86wmHCgcYEq7iGPdLgP3iX4L0n+zc+s1gY9qpV2sfVa7Tf0re+5YP9AqJeOKVQq6YbTTVltb3a1CsHbqFZrG/Jao2s1kl/SQYHdnHcH3hDry38UpBODFBXo7j/EE5yViqeAZPUmIB4dk1NNQgmedMLS8MLymb0jgdWZlRxE9VtyA3+aZ0JTnNtvwxw665O1FQZM1eJJRWFqXneW5iv9YIS0r9RLbKiBJ6x5aG0lBhyvHgxPBGaM5BzKyjTwv4rZlNqswH7rmtXQMz+NTYV8jyDl+LKH5KDIbnYHxyfdPlsou9oB+0igg7RMTpHIzRGzPnhnDkj58I9dCN34qZL1HW6mW9ordz8EcYOzhY=</latexit>

mt = �1mt�1 + (1� �1)Gt

vt = �2vt�1 + (1� �2)G
2
t

m̂t =
mt

1� �t
1

v̂t =
vt

1� �t
2

<latexit sha1_base64="txCkKLOPx983dLF5vr3VpzV8Lag=">AAACi3icbVFda9RAFJ2kftTV6rY+ijC4WCvSJdFSRRSKIvhYwW0LmyXcTCabYScz6cxNYQ35Ef48n/0Rvjr5eHBbLwwczplz7+XcpJTCYhD88vytW7fv3N2+N7r/YOfho/Hu3pnVlWF8xrTU5iIBy6VQfIYCJb8oDYcikfw8WX1u9fMrbqzQ6juuS74oYKlEJhigo+LxzwhzjhDjaP8jHXCNh2FDD2nUCTRiqcYRpTSSPMODFjmcGWB1lAPWRRNjU0f20mBPXLUEfeX8pRVSq6a3OEK6xVLoO25M69obsczxZTyeBNOgK3oThAOYkKFO4/HvKNWsKrhCJsHaeRiUuKjBoGCSN6OosrwEtoIlnzuooOB2UXfRNfS5Y1KaaeOeQtqx/zpqKKxdF4n7WQDm9rrWkv/T5hVm7xa1UGWFXLF+UFZJipq2d6CpMJyhXDsAzAi3K2U5uFDRXWtjCorVj8alEl7P4CY4ez0Nj6fht6PJyachn23yhDwjByQkb8kJ+UpOyYww8sd76u17L/wd/43/3v/Qf/W9wfOYbJT/5S/AysK2</latexit>

✓t = ✓t�1 � ⌘t ·
✓

m̂tp
v̂t + ✏

+ � · ✓t�1

◆

<latexit sha1_base64="5q0tvzHOt+e9KdE9OG8vxFcUh/w=">AAAB/3icbVBNS8NAEJ34WetX1aOXYBE8lUREvQhFD3qsYD+gDWGz3bRLN5uwOxFq6MGf4FV/gDfx6k/x7B9x2+ZgWx8MPN6bYWZekAiu0XG+raXlldW19cJGcXNre2e3tLff0HGqKKvTWMSqFRDNBJesjhwFayWKkSgQrBkMbsZ+85EpzWP5gMOEeRHpSR5yStBIzVsfr3o++qWyU3EmsBeJm5My5Kj5pZ9ON6ZpxCRSQbRuu06CXkYUcirYqNhJNUsIHZAeaxsqScS0l03OHdnHRunaYaxMSbQn6t+JjERaD6PAdEYE+3reG4v/ee0Uw0sv4zJJkUk6XRSmwsbYHv9ud7liFMXQEEIVN7fatE8UoWgSmtmCfPA0Mqm48xksksZpxT2vuPdn5ep1nk8BDuEITsCFC6jCHdSgDhQG8AKv8GY9W+/Wh/U5bV2y8pkDmIH19QtF6pbs</latexit>

Gt = gt

<latexit sha1_base64="znYEOH50r4QMwaOssstmKUoNMOI=">AAACT3icbZDNSsQwFIXT8f+/6tJNcFAEcWhF1I0gunGp4OjAdChpJnXCpElNboWx9Ml8CpcuxZ0+gDsxnelCHS8kfJxzLzc5USq4Ac97cWoTk1PTM7Nz8wuLS8sr7urajVGZpqxJlVC6FRHDBJesCRwEa6WakSQS7Dbqn5f+7QPThit5DYOUdRJyJ3nMKQErhW4zgB4DEgLePsEV57DnF3gPByMjoF1l71gTmgc9AnlShFDkgbnXMBIeSgHv2oHUcKFkEbp1r+ENC4+DX0EdVXUZum9BV9EsYRKoIMa0fS+FTk40cCpYMR9khqWE9skda1uUJGGmkw+/X+Atq3RxrLQ9EvBQ/TmRk8SYQRLZzoRAz/z1SvE/r51BfNzJuUwzYJKOFsWZwKBwmSXucs0oiIEFQjW3b8W0R2xOYBP/tQV4/7FMxf+bwTjc7Df8w4Z/dVA/PavymUUbaBPtIB8doVN0gS5RE1H0hF7RO/pwnp1P56tWtdacCtbRr6rNfQO7MrWr</latexit>

✓t = ✓t�1 � ⌘t ·
m̂tp
v̂t + ✏

<latexit sha1_base64="9/QutYiy7XBfHIl/9fen3VYrKWM=">AAACFnicbVDLSgNBEJz1Gd9Rj3oYDIIeDLsi6kUIevEYwaiQDUvvZDYZMju7zPQKcdmLX+EneNUP8CZevXr2R5w8Dr4KGoqqbrq7wlQKg6774UxMTk3PzJbm5hcWl5ZXyqtrVybJNOMNlshE34RguBSKN1Cg5Dep5hCHkl+HvbOBf33LtRGJusR+ylsxdJSIBAO0UlDe7ARIT6ivIJRAox0fuxwhyHHPK3aDcsWtukPQv8QbkwoZox6UP/12wrKYK2QSjGl6boqtHDQKJnkx72eGp8B60OFNSxXE3LTy4RcF3bZKm0aJtqWQDtXvEznExvTj0HbGgF3z2xuI/3nNDKPjVi5UmiFXbLQoyiTFhA4ioW2hOUPZtwSYFvZWyrqggaEN7scWFL27wqbi/c7gL7nar3qHVe/ioFI7HedTIhtki+wQjxyRGjknddIgjNyTR/JEnp0H58V5dd5GrRPOeGad/IDz/gVBiJ7h</latexit>

gt = rf(✓t�1)
<latexit sha1_base64="mfh5IC9VpMLYRBYcFDwDO5Lm1bY=">AAACGnicbVDLSgMxFM3UV62vUZdugkUQxDIjom6EogtdVrAP6JQhk2ba0MyD5I5Qh279Cj/BrX6AO3HrxrU/YqadhW09kHA45x5ucrxYcAWW9W0UFhaXlleKq6W19Y3NLXN7p6GiRFJWp5GIZMsjigkesjpwEKwVS0YCT7CmN7jO/OYDk4pH4T0MY9YJSC/kPqcEtOSa+MYFfIl7+j7CjtDBLsEO9BkQN4Vje+SaZatijYHniZ2TMspRc80fpxvRJGAhUEGUattWDJ2USOBUsFHJSRSLCR2QHmtrGpKAqU46/skIH2ili/1I6hMCHqt/EykJlBoGnp4MCPTVrJeJ/3ntBPyLTsrDOAEW0skiPxEYIpzVgrtcMgpiqAmhkuu3YtonklDQ5U1tAT54zFqxZzuYJ42Tin1Wse9Oy9WrvJ8i2kP76BDZ6BxV0S2qoTqi6Am9oFf0Zjwb78aH8TkZLRh5ZhdNwfj6BdZHoDo=</latexit>

Gt = gt + �✓t�1

• Contrary to Adam, AdamW uses a decoupled weight decay, an this makes
AdamW invariant to rescaling.

• To remove instability (exploding gradients), clipping is often use so that:

• The typical parameters choices are (and they are probably the last things to
cross validate if you haven’t identified divergence)

<latexit sha1_base64="DrqaBDPD6jDvZLxxHzaX/PfW+FQ=">AAACCnicbVDLSsNAFJ3UV62vqEs3g0VwY0lEtBuh6MZlBfuANpbJ9KYdOpmEmUmhhv6Bn+BWP8CduPUnXPsjTtoubOuBC4dz7uVcjh9zprTjfFu5ldW19Y38ZmFre2d3z94/qKsokRRqNOKRbPpEAWcCapppDs1YAgl9Dg1/cJv5jSFIxSLxoEcxeCHpCRYwSrSROrbdhlgxHolr13lMz8rjjl10Ss4EeJm4M1JEM1Q79k+7G9EkBKEpJ0q1XCfWXkqkZpTDuNBOFMSEDkgPWoYKEoLy0snnY3xilC4OImlGaDxR/16kJFRqFPpmMyS6rxa9TPzPayU6KHspE3GiQdBpUJBwrCOc1YC7TALVfGQIoZKZXzHtE0moNmXNpWg2eMpacRc7WCb185J7WXLvL4qVm1k/eXSEjtEpctEVqqA7VEU1RNEQvaBX9GY9W+/Wh/U5Xc1Zs5tDNAfr6xciEJqV</latexit>

✏ = 10�8<latexit sha1_base64="KAKJtZwqOmzXRGpPkJ/uzKqMTrM=">AAACCXicbVBLSgNBFHzjN8ZPRl26aQyCG8O0iLoRgm5cRjAfSMbQ09OTNOn50N0jxCEn8Ahu9QDuxK2ncO1F7EmyMIkFD4qqerxHeYngSjvOt7W0vLK6tl7YKG5ube+U7N29hopTSVmdxiKWLY8oJnjE6pprwVqJZCT0BGt6g5vcbz4yqXgc3ethwtyQ9CIecEq0kbp2qSNM2CdX2HnITvCoa5edijMGWiR4SsowRa1r/3T8mKYhizQVRKk2dhLtZkRqTgUbFTupYgmhA9JjbUMjEjLlZuPHR+jIKD4KYmkm0mis/t3ISKjUMPRMMiS6r+a9XPzPa6c6uHQzHiWpZhGdHApSgXSM8haQzyWjWgwNIVRy8yuifSIJ1aarmSuaD57yVvB8B4ukcVrB5xV8d1auXk/7KcABHMIxYLiAKtxCDepAIYUXeIU369l6tz6sz0l0yZru7MMMrK9f96qZ6w==</latexit>

� = 10�1
<latexit sha1_base64="+cZbFveNu7cQ87tbr1CBtiNUxFk=">AAACA3icbVDLSgNBEJz1GeMr6tHLYBA8LbsiPg5C0IvHCOYByRJmJ7PJkNmZZaZXiEuOfoJX/QBv4tUP8eyPOEn2YBILGoqqbrq7wkRwA5737Swtr6yurRc2iptb2zu7pb39ulGppqxGlVC6GRLDBJesBhwEayaakTgUrBEObsd+45Fpw5V8gGHCgpj0JI84JWClVjtkQDr+tededUplz/UmwIvEz0kZ5ah2Sj/trqJpzCRQQYxp+V4CQUY0cCrYqNhODUsIHZAea1kqScxMkE1OHuFjq3RxpLQtCXii/p3ISGzMMA5tZ0ygb+a9sfif10ohugwyLpMUmKTTRVEqMCg8/h93uWYUxNASQjW3t2LaJ5pQsCnNbAE+eBrZVPz5DBZJ/dT1z13//qxcucnzKaBDdIROkI8uUAXdoSqqIYoUekGv6M15dt6dD+dz2rrk5DMHaAbO1y8njpff</latexit>

�1 = 0.9
<latexit sha1_base64="jGGKE64gZKhVzaBDz7uxPIJD9tc=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwFZLicyEU3bisYG2hCWUynbRDJ5MwcyPU0K2f4FY/wJ249T9c+yNO2yxs64ELh3Pu5VxOkAiuwXG+rcLS8srqWnG9tLG5tb1T3t170HGqKGvQWMSqFRDNBJesARwEayWKkSgQrBkMbsZ+85EpzWN5D8OE+RHpSR5ySsBInhcwIJ3qlWNfnnbKFcd2JsCLxM1JBeWod8o/XjemacQkUEG0brtOAn5GFHAq2KjkpZolhA5Ij7UNlSRi2s8mP4/wkVG6OIyVGQl4ov69yEik9TAKzGZEoK/nvbH4n9dOIbzwMy6TFJik06AwFRhiPC4Ad7liFMTQEEIVN79i2ieKUDA1zaQAHzyNTCvufAeL5KFqu2e2e3dSqV3n/RTRATpEx8hF56iGblEdNRBFCXpBr+jNerberQ/rc7pasPKbfTQD6+sXpWaYHw==</latexit>

�2 = 0.95

<latexit sha1_base64="HyvDYGll44fcvPCl0AAC4LX1e2A=">AAACsnichVFda9RAFJ2kftT4teqjIIOLUmFZklJqXyzF+uCLUsHdFneWMJncZIedTMLMTek25H/5V3z2jzjZzYPtCl4YOJx7z7mXM0mlpMUw/OX5O3fu3ru/+yB4+Ojxk6eDZ8+ntqyNgIkoVWkuEm5BSQ0TlKjgojLAi0TBebI87frnl2CsLPV3XFUwL3iuZSYFR0fFg58M4QoRm1MlqzZmXFULvpe/+8ASyKVuhPO2bZCP6Fu6Hm1kRlvK1BQM0pwy04F43zFAN+oRZWx2WOE8YGlmuGg2dNtsiZzPiP7f+rg3HgcMdNqfFA+G4ThcF90GUQ+GpK+zePCbpaWoC9AoFLd2FoXuxoYblEJBG7DaQsXFkucwc1DzAuy8WSfc0jeOSWlWGvc00jX7t6LhhbWrInGTBceFvd3ryH/1ZjVmR/NG6qpG0GKzKKsVxZJ230VTaUCgWjnAhZHuVioW3KWK7lNvbEG5vO5SiW5nsA2m++PocBx9OxiefOzz2SUvyWuyRyLynpyQz+SMTIjwXnmfvC/eV//A/+FzX2xGfa/XvCA3yld/APk903k=</latexit>

Clip↵(g) =

8
><

>:

g, if kgk2  ↵,

↵

kgk2
g, if kgk2 > ↵.

<latexit sha1_base64="VT+vrfzn6iesGZI/rATRr6OnFmA=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqBch6MVjBPOAZAm9k0kyZHZ2mZkV4pKLn+BVP8CbePVPPPsjTpI9mMSChqKqm+6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+grqNEUVajkYhUM0DNBJesZrgRrBkrhmEgWCMY3k78xiNTmkfywYxi5ofYl7zHKRorNdso4gFee51iyS27U5Bl4mWkBBmqneJPuxvRJGTSUIFatzw3Nn6KynAq2LjQTjSLkQ6xz1qWSgyZ9tPpvWNyYpUu6UXKljRkqv6dSDHUehQGtjNEM9CL3kT8z2slpnflp1zGiWGSzhb1EkFMRCbPky5XjBoxsgSp4vZWQgeokBob0dwWw4dPY5uKt5jBMqmflb2Lsnd/XqrcZPnk4QiO4RQ8uIQK3EEVakBBwAu8wpvz7Lw7H87nrDXnZDOHMAfn6xfSOpc1</latexit>

↵ = 1

Choosing the Learning Rate Schedule 52

<latexit sha1_base64="sw4o/gBX/r3iJ5r80NjzRFBMIx4=">AAADEXicdVLLjtMwFHXCayivDkhs2BgqUCo6VTJCMAuQRsOG5SC1MyPVVeU4N61Vx4niG6BE+Qo+gS18ADvEli9gzY9gd4KYF1dKdHTuuTnHN44LJQ2G4S/Pv3T5ytVrG9c7N27eun2nu3n3wORVKWAscpWXRzE3oKSGMUpUcFSUwLNYwWG8fO36h++gNDLXI1wVMM34XMtUCo6Wmm169xkgD7D/qsNimEtdC/s103QcPasZwgesDfISm4Y+pcFJugC+bJqtC5R9NmBJWnJRY1OPZu+bAX1CQ8oUUKQvqWUGlLHJToHTv0aZ1M6gHfu/jdM19bYNqCDFIHIzIjfsIduT84AV8p813XJONkALnKLPSjlfYN8Fslwbyb1HQxtFJ+35Z91eOAzXRc+DqAU90tb+rPubJbmoMtAoFDdmEoX2dLVdhxQKbNzKQMHFks9hYqHmGZhpvf6BDX1smYSmeWkfjXTNnpyoeWbMKoutMuO4MGd7jryoN6kw3ZnWUhcVghbHRmmlKObU3QaayBIEqpUFXJTSZqViwe320N6ZUy4olx/dVqKzOzgPDraH0fNh9PZZb3ev3c8GeUAekYBE5AXZJW/IPhkT4TXeZ++L99X/5H/zv/s/jqW+187cI6fK//kH7b/4qA==</latexit>

⌘(t) =

8
>><

>>:

⌘start + (⌘peak � ⌘start)
t

Tw
, 0  t < Tw,

⌘min +
⌘peak � ⌘min

2

✓
1 + cos

⇣
⇡

t� Tw

T � Tw

⌘◆
, Tw  t  T.

• Assume we fix the optimizer hyperparameters, the batch size,
and the total number of steps. What remains is to choose the
learning rate schedule.

• The typical strategy to pick a learning rate is to use a schedule
that includes a warmup period and a cosine decay rule:

• Typical values are and

• The remaining variable to specify are : the batch size, the
number of steps and the peak learning rate : they depend
on the number of parameters P.

<latexit sha1_base64="My5D828a26yaUlv9P1G3koOWcRY=">AAAB+3icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jFiXpAsYXYymwyZfTDTq8RlP8GrfoA38erHePZHnCR7MIkFDUVVN91dXiyFRtv+tlZW19Y3Ngtbxe2d3b390sFhU0eJYrzBIhmptkc1lyLkDRQoeTtWnAae5C1vdDvxW49caRGFdRzH3A3oIBS+YBSN9FDvPfVKZbtiT0GWiZOTMuSo9Uo/3X7EkoCHyCTVuuPYMbopVSiY5Fmxm2geUzaiA94xNKQB1246PTUjp0bpEz9SpkIkU/XvREoDrceBZzoDikO96E3E/7xOgv61m4owTpCHbLbITyTBiEz+Jn2hOEM5NoQyJcythA2pogxNOnNbUIyeM5OKs5jBMmmeV5zLinN/Ua7e5PkU4BhO4AwcuIIq3EENGsBgAC/wCm9WZr1bH9bnrHXFymeOYA7W1y9zqJVd</latexit>

Tw

<latexit sha1_base64="vXe+IrGIqQ0ONzZzT+AnSx3Z8JY=">AAACDHicbVDLSsNAFJ34rPUV69LNYBHcWJIi6kYounFZoS9oa5lMJu3QySTM3Kg19Bf8BLf6Ae7Erf/g2h9x+ljY1gMXDufcy7kcLxZcg+N8W0vLK6tr65mN7ObW9s6uvZer6ShRlFVpJCLV8IhmgktWBQ6CNWLFSOgJVvf61yO/fs+U5pGswCBm7ZB0JQ84JWCkjp2rdB4uXecuPSkOW9SPAFc6dt4pOGPgReJOSR5NUe7YPy0/oknIJFBBtG66TgztlCjgVLBhtpVoFhPaJ13WNFSSkOl2Ov59iI+M4uMgUmYk4LH69yIlodaD0DObIYGenvdG4n9eM4Hgop1yGSfAJJ0EBYnAEOFREdjnilEQA0MIVdz8immPKELB1DWTArz/NDStuPMdLJJaseCeFdzb03zpatpPBh2gQ3SMXHSOSugGlVEVUfSIXtArerOerXfrw/qcrC5Z05t9NAPr6xfjBprx</latexit>

Tw = 10�2 · T
<latexit sha1_base64="mfqdmGG485rsD5w/lLQLfcDLDl0=">AAACPHicbVA9SwNBFNzz+9uopc1iECw03ImojRBiY6lgVMjFsLf3kizZ2zt234nxuP/jr/An2Kq1dmJr7SamSIwDC8PMe8zbCRIpDLrumzMxOTU9Mzs3v7C4tLyyWlhbvzJxqjlUeSxjfRMwA1IoqKJACTeJBhYFEq6DzmnPv74DbUSsLrGbQD1iLSWagjO0UqNQ8QFZw0e4x8wg05ifuLt0SAQV5ieee5vt7ec+D2McNhNgnbxRKLoltw86TrwBKZIBzhuFdz+MeRqBQi6ZMTXPTbCe2XDBJeQLfmogYbzDWlCzVLEITD3r/zWn21YJaTPW9imkfXV4I2ORMd0osJMRw7b56/XE/7xais3jeiZUkiIo/hvUTCXFmPaKo6HQwFF2LWFcC3sr5W2mGUdb70gKis5DrxXvbwfj5Gq/5B2WvIuDYrky6GeObJItskM8ckTK5Iyckyrh5JE8kxfy6jw5H86n8/U7OuEMdjbICJzvH6SrsDw=</latexit>

⌘start = 0, ⌘end = 10�2 · ⌘peak

<latexit sha1_base64="m+IeLjoGMFnDG2F0df4NP/cbon4=">AAACDHicbVDLSsNAFJ3UV62vWJdugkVwVRIRdVl047KCfUAbwmR60w6dTMLMjbSG/IKf4FY/wJ249R9c+yOmj4VtPXDhcM69nMvxY8E12va3UVhb39jcKm6Xdnb39g/Mw3JTR4li0GCRiFTbpxoEl9BAjgLasQIa+gJa/vB24rceQWkeyQccx+CGtC95wBnFXPLMcheQemkXYYRpDHSYZZ5Zsav2FNYqceakQuaoe+ZPtxexJASJTFCtO44do5tShZwJyErdRENM2ZD2oZNTSUPQbjr9PbNOc6VnBZHKR6I1Vf9epDTUehz6+WZIcaCXvYn4n9dJMLh2Uy7jBEGyWVCQCAsja1KE1eMKGIpxTihTPP/VYgOqKMO8roUU5MOnSSvOcgerpHledS6rzv1FpXYz76dIjskJOSMOuSI1ckfqpEEYGZEX8krejGfj3fgwPmerBWN+c0QWYHz9ApvdnKE=</latexit>⌘peak

Chinchilla’s rule 53

• Three strategies are proposed:

• The "scaling law" describe how performance improve when compute C,
total number of tokens T or model size P increase. The dependency are
often expressed as power law.

• Parametrize the loss as
<latexit sha1_base64="ZzbocEMFvKEa0vXzDYF8/YXHYBA=">AAACJ3icbZBLahtBEIZ7HD8Vx1HipTeNRcBgImZMSLwJOPbGCy8UsB6gkURNq0Zq1POguyagDHOKnMJH8NY+gHchXhpfJC1pFpbtHxp+/qqiqr8gVdKQ6947K29W19Y3Nrcqb7ff7byvfvjYMkmmBTZFohLdCcCgkjE2SZLCTqoRokBhO5iczertX6iNTOJLmqbYi2AUy1AKIBsNqp99VIp/5xeHfqhB5D+KvNH3QaVjKMrotMgv+36ABMWgWnPr7lz8pfFKU2OlGoPqoz9MRBZhTEKBMV3PTamXgyYpFBYVPzOYgpjACLvWxhCh6eXzbxX8k02GPEy0fTHxefp0IofImGkU2M4IaGye12bha7VuRuFxL5dxmhHGYrEozBSnhM8Y8aHUKEhNrQGhpb2VizFYFmRJLm0hOfk9o+I9Z/DStI7q3te69/NL7eS05LPJ9tg+O2Ae+8ZO2DlrsCYT7A+7Zjfs1rly7py/zr9F64pTzuyyJTkP/wEY/KbN</latexit>

` = L+
A

P↵
+

B

T �

However, this does not guide the design of the learning rate or batch size.

<latexit sha1_base64="n/1Bh8DKMID8j6ZRZnbWMcx+Kvs=">AAACCnicbVDLSgMxFM34rPU16tJNsAjSRZkpoi6LblxW6AvaacmkmTY0k4QkU6xD/8BPcKsf4E7c+hOu/RHTx8K2HrhwOOdezuWEklFtPO/bWVvf2Nzazuxkd/f2Dw7do+OaFonCpIoFE6oRIk0Y5aRqqGGkIRVBcchIPRzcTfz6kChNBa+YkSRBjHqcRhQjY6WO61ba+RaSUolHWPTK7XzHzXkFbwq4Svw5yYE5yh33p9UVOIkJN5ghrZu+J02QImUoZmScbSWaSIQHqEealnIUEx2k08/H8NwqXRgJZYcbOFX/XqQo1noUh3YzRqavl72J+J/XTEx0E6SUy8QQjmdBUcKgEXBSA+xSRbBhI0sQVtT+CnEfKYSNLWshxdDB09i24i93sEpqxYJ/VfAfLnOl23k/GXAKzsAF8ME1KIF7UAZVgMEQvIBX8OY8O+/Oh/M5W11z5jcnYAHO1y9O0poS</latexit>

T ⇤ ⇡ 20P ⇤
• The conclusion of Chinchilla’s rule is that Ref.: Training Compute-Optimal Large

Language Models

<latexit sha1_base64="RwT4X22ydVdcWLB+nwXpxqwjenA=">AAACMnicbVDNSgMxGMzW//9Vj16CRdBSyq6IehFEQTwIrtCq0G1LNk1raDa7JN+KddlX8Sl8BK9615t49SFMaw+2dSAwmZmPL5kgFlyD47xbuYnJqemZ2bn5hcWl5RV7de1aR4mirEIjEanbgGgmuGQV4CDYbawYCQPBboLOac+/uWdK80iWoRuzWkjakrc4JWCkhn3o1QvFcr1w5BPV9kMuG6lXLBd9YA+Qnl1cejo7Os1w/w6QikjrbNskdhp23ik5feBx4g5IHg3gNewvvxnRJGQSqCBaV10nhlpKFHAqWDbvJ5rFhHZIm1UNlSRkupb2f5jhLaM0cStS5kjAffXvREpCrbthYJIhgTs96vXE/7xqAq3DWsplnACT9HdRKxEYItyrCze5YhRE1xBCFTdvxfSOKELBlDq0BXjnMTOtuKMdjJPr3ZK7X3Kv9vLHJ4N+ZtEG2kTbyEUH6BidIw9VEEVP6AW9ojfr2fqwPq2v32jOGsysoyFY3z9fA6pc</latexit>

P ⇤, T ⇤ = arg min
P,T,FLOPs=C

loss(P, T)
Ref.: Scaling Laws for Neural Language Models

• Fix P, compute for multiple T • Isoflop, fix C and optimizer over P, T

<latexit sha1_base64="q3cGuwZfR0XWW3bh4ly+5xpdMx4=">AAAB/XicbVBNS8NAEJ34WetX1aOXYBE8lUSkehGKvXis0LSFNpTNdtsu3WzC7kSoofgTvOoP8CZe/S2e/SNu2xxs64OBx3szzMwLYsE1Os63tba+sbm1ndvJ7+7tHxwWjo4bOkoUZR6NRKRaAdFMcMk85ChYK1aMhIFgzWBUnfrNR6Y0j2QdxzHzQzKQvM8pQSN51dtyrd4tFJ2SM4O9StyMFCFDrVv46fQimoRMIhVE67brxOinRCGngk3ynUSzmNARGbC2oZKETPvp7NiJfW6Unt2PlCmJ9kz9O5GSUOtxGJjOkOBQL3tT8T+vnWD/xk+5jBNkks4X9RNhY2RPP7d7XDGKYmwIoYqbW206JIpQNPksbEE+epqYVNzlDFZJ47Lklkvuw1Wxcpflk4NTOIMLcOEaKnAPNfCAAocXeIU369l6tz6sz3nrmpXNnMACrK9fCxOVoQ==</latexit>

C = 6PT

The DeepSeek approach
• Another approach, probably more frugal:

• Use a small budget to estimate small scale-parameters: fix
a model, vary tokens size and derive the optimal learning
rate and batch size

• Using those hyper parameters, estimate varying T and P,
under a similar small budget

54

<latexit sha1_base64="w+0lo9/JcUywFUCbbiVQMEcFXMw=">AAACP3icbVDLShxBFK028TW+Jrp0U2QQRHDoDkHdBHwQcGnAUWFqZrhdc8cpprq6qbotmTT9RfkKP8GlcenCXcg2O2vGgcTHgYLDOfdwb50408pRGN4GU+/eT8/Mzs1XFhaXlleqH1bPXJpbiQ2Z6tRexOBQK4MNUqTxIrMISazxPB4cjfzzK7ROpeaUhhm2Erg0qqckkJc61a8CCdpbnUIQfqciQxiUJf/CD7iQ3ZT4UbvYFqCzPpRCVEx7y3uH/zwR+3hZ6VRrYT0cg78m0YTU2AQnneq96KYyT9CQ1OBcMwozahVgSUmNZUXkDjOQA7jEpqcGEnStYvzdkm94pct7qfXPEB+r/ycKSJwbJrGfTID67qU3Et/ymjn19lqFMllOaOTTol6uOaV81B3vKouS9NATkFb5W7nsgwVJvuFnW0gNfpS+lehlB6/J2ad6tFOPvn2u7R9O+plj6+wj22QR22X77JidsAaT7Ce7Yb/YXXAdPAS/gz9Po1PBJLPGniH4+wh4Ba6r</latexit>

⌘⇤peak = A · C�↵

n⇤ = B · C�

<latexit sha1_base64="40SY2J8uFsgrjiBZ/kCXxGkr95k=">AAACLXicbVDLSgMxFM3UV62vUZdugkUQF2VGRd0IRQVdVrC10GlLJpO2ocnMkNwRaumH+BV+glv9ABeCuHHhb5hpC2rrgcC559zLvTl+LLgGx3mzMjOzc/ML2cXc0vLK6pq9vlHRUaIoK9NIRKrqE80ED1kZOAhWjRUj0hfs1u+ep/7tHVOaR+EN9GJWl6Qd8hanBIzUtA9Kjb1T75JISTwaRIDPG157WHm5m9S6YAJ+rCCtmnbeKThD4GnijkkejVFq2p9eENFEshCoIFrXXCeGep8o4FSwQc5LNIsJ7ZI2qxkaEsl0vT/83ADvGCXArUiZFwIeqr8n+kRq3ZO+6ZQEOnrSS8X/vFoCrZN6n4dxAiyko0WtRGCIcJoUDrhiFETPEEIVN7di2iGKUDB5/tkCvHs/MKm4kxlMk8p+wT0quNeH+eLZOJ8s2kLbaBe56BgV0RUqoTKi6AE9oWf0Yj1ar9a79TFqzVjjmU30B9bXN+dsqAw=</latexit>

P ⇤ = � · C�

T ⇤ = � · C�

<latexit sha1_base64="UsslYcXBlFe6dbGNmBe86wwnJ8U=">AAACCXicbVDLSsNAFJ3UV62PVl26CRZBEEoiom6EohuXFewDmlBuptN26EwSZm6EGvoFfoJb/QB34tavcO2POG2zsK0HLhzOuZdzOUEsuEbH+bZyK6tr6xv5zcLW9s5usbS339BRoiir00hEqhWAZoKHrI4cBWvFioEMBGsGw9uJ33xkSvMofMBRzHwJ/ZD3OAU0UqdU9PogJZx6XSYQrt1OqexUnCnsZeJmpEwy1DqlH68b0USyEKkArduuE6OfgkJOBRsXvESzGOgQ+qxtaAiSaT+dPj62j43StXuRMhOiPVX/XqQgtR7JwGxKwIFe9Cbif147wd6Vn/IwTpCFdBbUS4SNkT1pwe5yxSiKkSFAFTe/2nQACiiaruZSkA+fxqYVd7GDZdI4q7gXFff+vFy9yfrJk0NyRE6ISy5JldyRGqkTShLyQl7Jm/VsvVsf1udsNWdlNwdkDtbXL3bBmjo=</latexit>

� + � = 1with

Initialisation via muP

55

Initialisation in LLMs
• Initialisation has to keep activations and gradients in reasonable

range, avoid one layer dominating, behave well with scale and depth

• In many models (e.g., DeepSeek, Llama3) activation initialisation is
given by:

• At the same time, layers often include scalar normalizations (e.g., in
the attention layer) and rescalings that influence the effective
initialization. In fact, these effects can be understood using
invariance rules.

56

where
<latexit sha1_base64="j1zLCAc3dfDkObWHbdTjcAnTG9k=">AAACA3icbVDLSgMxFM34rPVVdekmWARXZaaIuhGKblxWsA+YDiWTZtrQZDIkd4Q6dOknuNUPcCdu/RDX/ohpOwvbeiDkcM693HtPmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4DFrAAfB2olmRIaCtcLh7cRvPTJtuIofYJSwQJJ+zCNOCVjJ7xjel+TarbjVbqlsvynwMvFyUkY56t3ST6enaCpZDFQQY3zPTSDIiAZOBRsXO6lhCaFD0me+pTGRzATZdOUxPrVKD0dK2xcDnqp/OzIijRnJ0FZKAgOz6E3E/zw/hegqyHicpMBiOhsUpQKDwpP7cY9rRkGMLCFUc7srpgOiCQWb0twU4MOnsU3FW8xgmTSrFe+i4t2fl2s3eT4FdIxO0Bny0CWqoTtURw1EkUIv6BW9Oc/Ou/PhfM5KV5y85wjNwfn6BT5rl+0=</latexit>

� = 0.02
<latexit sha1_base64="lNWbNJQeY1WrGMm3/p1xwr+vdzA=">AAACHHicbVDLSsNAFJ3UV62vqEs3Q4tQQUpSRF0W3ehGKtgHNLFMppN26OTBzESoIXu/wk9wqx/gTtwKrv0RJ2kWtvXAhcM593LvPU7IqJCG8a0VlpZXVteK66WNza3tHX13ry2CiGPSwgELeNdBgjDqk5akkpFuyAnyHEY6zvgy9TsPhAsa+HdyEhLbQ0OfuhQjqaS+XrY8JEcYsfgmqRrHlqBDD93XYSY7bnydHPX1ilEzMsBFYuakAnI0+/qPNQhw5BFfYoaE6JlGKO0YcUkxI0nJigQJER6jIekp6iOPCDvOfkngoVIG0A24Kl/CTP07ESNPiInnqM70RDHvpeJ/Xi+S7rkdUz+MJPHxdJEbMSgDmAYDB5QTLNlEEYQ5VbdCPEIcYanim9ki6fgxUamY8xkskna9Zp7WzNuTSuMiz6cIDkAZVIEJzkADXIEmaAEMnsALeAVv2rP2rn1on9PWgpbP7IMZaF+/53Ch7w==</latexit>

N (0,�2I)

<latexit sha1_base64="xNC8UxPWaC9cHqjDjh7L4kVKYYs=">AAACAXicbVDLTgJBEJzFF+IL9ehlIjHBC9k1Rj0SvXjERB4GNmR2mIUJM7ObmV4T3HDyE7zqB3gzXv0Sz/6IA+xBwEo6qVR1p7sriAU34LrfTm5ldW19I79Z2Nre2d0r7h80TJRoyuo0EpFuBcQwwRWrAwfBWrFmRAaCNYPhzcRvPjJteKTuYRQzX5K+4iGnBKz0EJY7MGBATrvFkltxp8DLxMtICWWodYs/nV5EE8kUUEGMaXtuDH5KNHAq2LjQSQyLCR2SPmtbqohkxk+nB4/xiVV6OIy0LQV4qv6dSIk0ZiQD2ykJDMyiNxH/89oJhFd+ylWcAFN0tihMBIYIT77HPa4ZBTGyhFDN7a2YDogmFGxGc1uAD5/GNhVvMYNl0jireBcV7+68VL3O8smjI3SMyshDl6iKblEN1RFFEr2gV/TmPDvvzofzOWvNOdnMIZqD8/ULhgiXmA==</latexit>

f(✓)
<latexit sha1_base64="D/kkflbTzGFkDCXrKxVMY6FMBrk=">AAACJ3icbZDNSgMxFIUz/lv/qi7dBIugSMuMiLoRRDcuK9hW6JRyJ83Y0ExmSO4IdehT+BQ+glt9AHeiS/FFTNtZqPVC4Ms593KTEyRSGHTdD2dqemZ2bn5hsbC0vLK6VlzfqJs41YzXWCxjfROA4VIoXkOBkt8kmkMUSN4IehdDv3HHtRGxusZ+wlsR3CoRCgZopXax7GOXI7Qz3PcGp/kFaZn6FqivIJBAw92xsdcultyKOyo6CV4OJZJXtV388jsxSyOukEkwpum5CbYy0CiY5IOCnxqeAOvBLW9aVBBx08pG3xrQHat0aBhrexTSkfpzIoPImH4U2M4IsGv+ekPxP6+ZYnjSyoRKUuSKjReFqaQY02FGtCM0Zyj7FoBpYd9KWRc0MLRJ/tqConc/sKl4fzOYhPpBxTuqeFeHpbPzPJ8FskW2yS7xyDE5I5ekSmqEkQfyRJ7Ji/PovDpvzvu4dcrJZzbJr3I+vwG4aqXp</latexit>

✓t+1 = ✓t � ⌘rf(✓)

leads to the same result
<latexit sha1_base64="J8oYHEq82J7G5ggLVifsR12f2S8=">AAACXXicbZBLSwMxFIXT8f2uunDhJliEClJmiqi4ENGNSwWrQlPLnTTThmYeJHeEOswP9Ce4cuEPcKs703YUXxcCh++cyw3HT5Q06LpPJWdicmp6ZnZufmFxaXmlvLp2beJUc9HgsYr1rQ9GKBmJBkpU4jbRAkJfiRu/fzb0b+6FNjKOrnCQiFYI3UgGkgNa1C5zllWDO6bsRgeOGPYEAsOYBtWC0THb2WWBBp4xI7sh5Fnh5p/YRr7gXT238bE+dlneLlfcmjsa+ld4haiQYi7a5RfWiXkaigi5AmOanptgKwONkiuRz7PUiAR4H7qiaWUEoTCtbFRGTrct6dAg1vZFSEf0+0YGoTGD0LfJELBnfntD+J/XTDE4bGUySlIUER8fClJFbVvDZmlHasFRDawArqX9K+U9sO2g7f/HFZT9h2Er3u8O/orres3br3mXe5WT06KfWbJJtkiVeOSAnJBzckEahJNH8kreyHvp2ZlyFp3lcdQpFTvr5Mc4Gx+N/blH</latexit>

{(f� : ✓ ! f(�✓),
�

�
,
⌘

�2
),� > 0}

<latexit sha1_base64="iy73XMzmLIFwRPhJgt0msSyGHP0=">AAACHnicbVDLSgNBEJz1bXxFPXoZjIKChN0g6lH04kkimChk19A7mSRDZnaXmV4hLvkBv8JP8Kof4E286tkfcTbJwVdBQ1HVTXdXmEhh0HU/nInJqemZ2bn5wsLi0vJKcXWtbuJUM15jsYz1dQiGSxHxGgqU/DrRHFQo+VXYO839q1uujYijS+wnPFDQiURbMEArNYtbPnY5QtP1jVDUV4BdBjI7H+y4e1bqKLip7DaLJbfsDkH/Em9MSmSMarP46bdilioeIZNgTMNzEwwy0CiY5IOCnxqeAOtBhzcsjUBxE2TDbwZ02yot2o61rQjpUP0+kYEypq9C25mfa357ufif10ixfRRkIkpS5BEbLWqnkmJM82hoS2jOUPYtAaaFvZWyLmhgaAP8sQVF725gU/F+Z/CX1Ctl76DsXeyXjk/G+cyRDbJJdohHDskxOSNVUiOM3JNH8kSenQfnxXl13katE854Zp38gPP+BT35opo=</latexit>

✓0 ⇠ N (0,�2)Consider: minimised with and

then any re-parametrization:

<latexit sha1_base64="i32xTggQUWvqwOKMHNVbgHDSbDw=">AAACMHicbVDLSsNAFJ34flt16WawCBWkJEWqS9GNK1GwKjS13Ewn7dCZJMzcCDXkT/wKP8GtfoCuRNz5FU5qF1o9MHA45z7mniCRwqDrvjoTk1PTM7Nz8wuLS8srq6W19UsTp5rxBotlrK8DMFyKiDdQoOTXieagAsmvgv5x4V/dcm1EHF3gIOEtBd1IhIIBWqldqvvY4wht1zdCUV8B9hjI7DSvuLt+qIFl1ugquKnlmS/t3E5Bd9qlslt1h6B/iTciZTLCWbv04XdilioeIZNgTNNzE2xloFEwyfMFPzU8AdaHLm9aGoHippUN78vptlU6NIy1fRHSofqzIwNlzEAFtrI4wIx7hfif10wxPGhlIkpS5BH7XhSmkmJMi7BoR2jOUA4sAaaF/StlPbCpoI301xYU/bvcpuKNZ/CXXNaqXr3qne+VD49G+cyRTbJFKsQj++SQnJAz0iCM3JNH8kSenQfnxXlz3r9LJ5xRzwb5BefzC3SaqoM=</latexit>

✓0 ⇠ N (0,
�2

�2
)

<latexit sha1_base64="X3BFqyofTEV1CW38ThrHt5qckgY=">AAACS3icbVDLSgMxFM3U97vq0k2wCIpYZoqoG0F047IFq0KnljtpxoZmMkNyR6jDfJdf4Qe4cCXoB7gTF6Z1EF8XAueec09ucoJECoOu++CUxsYnJqemZ2bn5hcWl8rLK+cmTjXjTRbLWF8GYLgUijdRoOSXieYQBZJfBP2ToX5xw7URsTrDQcLbEVwrEQoGaKlOueFjjyN0Mtz28sOiQbpD/VADy3zb5pkv7YVduKrltIBVX0EggYabX0Rh3eqUK27VHRX9C7wCVEhR9U75ye/GLI24QibBmJbnJtjOQKNgkuezfmp4AqwP17xloYKIm3Y2+npONyzTpWGs7VFIR+x3RwaRMYMosJMRYM/81obkf1orxfCgnQmVpMgV+1wUppJiTIc50q7QnKEcWABMC/tWynpgM0Ob9o8tKPq3uU3F+53BX3Beq3p7Va+xWzk6LvKZJmtknWwSj+yTI3JK6qRJGLkjj+SZvDj3zqvz5rx/jpacwrNKflRp4gM7ybQw</latexit>

✓t+1 = ✓t �
⌘

�2
�.rf(�.✓t)

<latexit sha1_base64="Nr0cWLfe77sCZIZlLn/UY8qwvN8=">AAACHXicbVDLSsNAFJ3UV62vqks3wSK4ComIuhGKblxWsA9oY5hMJu3QySTM3Ag15AP8Cj/BrX6AO3Errv0Rp20WtvXAwOGcc7l3jp9wpsC2v43S0vLK6lp5vbKxubW9U93da6k4lYQ2Scxj2fGxopwJ2gQGnHYSSXHkc9r2h9djv/1ApWKxuINRQt0I9wULGcGgJa9a68GAAr7PelwPBTj34LKg1tTyQKdsy57AXCROQWqoQMOr/vSCmKQRFUA4Vqrr2Am4GZbACKd5pZcqmmAyxH3a1VTgiCo3m3wmN4+0EphhLPUTYE7UvxMZjpQaRb5ORhgGat4bi/953RTCCzdjIkmBCjJdFKbchNgcN2MGTFICfKQJJpLpW00ywBIT0P3NbAE2fMx1K858B4ukdWI5Z5Zze1qrXxX9lNEBOkTHyEHnqI5uUAM1EUFP6AW9ojfj2Xg3PozPabRkFDP7aAbG1y9w4KNp</latexit>

✓�t = �.✓t

proof:

so:

Mu-P rules

• This means there is an intrinsic notion of rescaling parameters, which
depends on the optimizer.

• Interestingly, there exist initialization rules that allow scaling with
depth and width, such as Mu-P

• The idea is to find the initialization and learning rate (with the rescaling
constrained) that lead to the largest effective update while keeping
training stable.

• The nice thing about Mu-P is that it provides simple rules for how to
scale layer size and adjust learning rates as layer width grows.

57

Mu-P desirata

• When width grows infinitely:

• Activations vector should have -sized coordinates

• The output of the neural network should be .

• The parameter update should be maximal.

• This is the Mu-P initialisation.

58

<latexit sha1_base64="iL6m5DQrSPmDa2BAsLRoVEQrKfc=">AAACAXicbVDLTgJBEJzFF+IL9ehlIjHBC9k1Rj0SvXjEhIcGNmR2mIUJM7ObmV4T3HDyE7zqB3gzXv0Sz/6IA+xBwEo6qVR1p7sriAU34LrfTm5ldW19I79Z2Nre2d0r7h80TZRoyho0EpG+D4hhgivWAA6C3ceaERkI1gqGNxO/9ci04ZGqwyhmviR9xUNOCVjpoVMfMCBl77RbLLkVdwq8TLyMlFCGWrf40+lFNJFMARXEmLbnxuCnRAOngo0LncSwmNAh6bO2pYpIZvx0evAYn1ilh8NI21KAp+rfiZRIY0YysJ2SwMAsehPxP6+dQHjlp1zFCTBFZ4vCRGCI8OR73OOaURAjSwjV3N6K6YBoQsFmNLcF+PBpbFPxFjNYJs2zindR8e7OS9XrLJ88OkLHqIw8dImq6BbVUANRJNELekVvzrPz7nw4n7PWnJPNHKI5OF+//72XQw==</latexit>

⇥(1)

<latexit sha1_base64="/RA1YOAOCVzu61AukvEwHK/9cO0=">AAACBnicbVDLSsNAFL3xWeur6tLNYBHqpiQi6rLoxp0V7APaWCbTSTt0MgkzE6GG7P0Et/oB7sStv+HaH3HSZmFbD1w4nHMv93C8iDOlbfvbWlpeWV1bL2wUN7e2d3ZLe/tNFcaS0AYJeSjbHlaUM0EbmmlO25GkOPA4bXmj68xvPVKpWCju9TiiboAHgvmMYG2kh26A9ZBgntymFeekVyrbVXsCtEicnJQhR71X+un2QxIHVGjCsVIdx460m2CpGeE0LXZjRSNMRnhAO4YKHFDlJpPUKTo2Sh/5oTQjNJqofy8SHCg1DjyzmaVU814m/ud1Yu1fugkTUaypINNHfsyRDlFWAeozSYnmY0MwkcxkRWSIJSbaFDXzRbPRU2paceY7WCTN06pzXnXuzsq1q7yfAhzCEVTAgQuowQ3UoQEEJLzAK7xZz9a79WF9TleXrPzmAGZgff0CPjiZoA==</latexit>

O(1)

<latexit sha1_base64="O/7S/9iFKG7nEY3InHxGqcXfzEw=">AAACBXicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9RjUg8cI5gHZJcxOepMhsw9neoW45OwneNUP8CZe/Q7P/oiTZA8msaChqOqmmvITKTTa9re1tLyyurZe2Chubm3v7Jb29hs6ThWHOo9lrFo+0yBFBHUUKKGVKGChL6HpD67HfvMRlBZxdI/DBLyQ9SIRCM7QSJ57AxIZdbEPyDqlsl2xJ6CLxMlJmeSodUo/bjfmaQgRcsm0bjt2gl7GFAouYVR0Uw0J4wPWg7ahEQtBe9nk6RE9NkqXBrEyEyGdqH8vMhZqPQx9sxky7Ot5byz+57VTDC69TERJihDxaVCQSooxHTdAu0IBRzk0hHElzK+U95liHE1PMykoBk8j04oz38EiaZxWnPOKc3dWrl7l/RTIITkiJ8QhF6RKbkmN1AknD+SFvJI369l6tz6sz+nqkpXfHJAZWF+/03eZbw==</latexit>

�✓

Works well in practice!

Conclusion

• Let’s move toward a lab on "tiny scaling laws".

59

